Advancing Copy-Move Manipulation Detection in Complex Image Scenarios Through Multiscale Detector

计算机科学 探测器 人工智能 计算机视觉 钥匙(锁) 数字图像 图像处理 点(几何) 图像(数学) 特征提取 图像处理 模式识别(心理学) 数学 电信 几何学 计算机安全
作者
Anjali Diwan,Rajesh Mahadeva,Vinay Gupta
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 64736-64753 被引量:2
标识
DOI:10.1109/access.2024.3397466
摘要

This research presents a new approach for identifying instances of copy-move forgeries in digital images by utilizing the Multiscale Detector a Neural Network-based method, which serves as an image key-point detector and descriptor. The act of copy-move manipulation involves the replication and subsequent insertion of a specific segment of an image, intending to modify the overall content of the image. The approach we utilize leverages the sophisticated functionalities of Multiscale Detector, a framework that combines key-point detection with descriptor extraction, to accurately detect and localize instances of copy-move manipulation. The effectiveness of our approach is assessed on a range of copy-move forgeries, encompassing instances that have undergone post-processing and geometric transformations. The experimental findings illustrate the resilience of our approach in identifying instances of manipulations over a diverse range of textured images and various alteration approaches. Furthermore, our approach demonstrates strong performance even when subjected to supplementary processing procedures such as brightness modification, color reduction, contrast adjustment, and blurring. Our suggested method has greater performance when compared to the existing manipulation detection approach, as demonstrated through a comparative analysis. In addition, the algorithm we have developed has high computing efficiency, allowing for real-time detection of forgeries. The methodology employed in this study, which builds upon the Multiscale Detector framework, offers a highly effective approach to the detection of copy-move manipulations in digital images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助chase采纳,获得10
1秒前
zho发布了新的文献求助10
2秒前
大模型应助cucucucucu采纳,获得10
4秒前
Ava应助渊思采纳,获得10
5秒前
5秒前
Ava应助炙热初晴采纳,获得10
6秒前
万能图书馆应助wd采纳,获得10
6秒前
yu1240324777完成签到,获得积分10
7秒前
7秒前
科研通AI5应助烨伟采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
SciGPT应助那种采纳,获得10
11秒前
Hmm发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI5应助myt22采纳,获得10
13秒前
15秒前
子车茗应助流苏采纳,获得30
15秒前
Lucas应助纯真的晓啸采纳,获得10
16秒前
研友_LNMmW8发布了新的文献求助10
17秒前
17秒前
17秒前
su发布了新的文献求助10
17秒前
渊思发布了新的文献求助10
20秒前
22秒前
22秒前
Hmm完成签到,获得积分10
23秒前
迟大猫应助里里采纳,获得10
23秒前
24秒前
天天快乐应助545采纳,获得30
24秒前
阿梨完成签到 ,获得积分10
24秒前
JamesPei应助lucky采纳,获得30
27秒前
27秒前
orixero应助彤彤万事通采纳,获得10
27秒前
27秒前
叶子完成签到,获得积分20
27秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526093
求助须知:如何正确求助?哪些是违规求助? 3106509
关于积分的说明 9280568
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539235
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709478