Deep learning model for fiber optic distributed acoustic sensing seismic data compression based on autoencoder and recurrent neural networks

自编码 计算机科学 深度学习 压缩比 数据压缩 压缩(物理) 卷积神经网络 数据压缩比 人工智能 图像压缩 工程类 材料科学 复合材料 图像(数学) 图像处理 汽车工程 内燃机
作者
Honghui Wang,Xike Yang,Shangkun Zeng,Tong Liu,Xiang Wang,Yiru Wang
出处
期刊:Applied Optics [The Optical Society]
卷期号:63 (20): 5303-5303
标识
DOI:10.1364/ao.527625
摘要

Because of the extremely high sampling rate of fiber optic distributed acoustic sensing (DAS) equipment, the amount of DAS seismic data collected is enormous, which poses great challenges to the transmission and storage of DAS seismic data. Therefore, it is essential to study the compression methods of DAS seismic data. Existing data compression methods such as wavelet transform, cosine transform, and convolutional autoencoder (CAE) still have room for improvement in the compression performance and compression ratio (CR). Thus, we have proposed what we believe to be is a novel deep learning model called the recurrent autoencoder (RAE) for high-performance compression of DAS seismic data. Under different CRs, we have designed performance evaluation experiments for RAE models based on different RNN modules with different loss functions. When the CR of the RAE model is 8, the signal-to-noise ratio (SNR) of the reconstructed DAS seismic data reaches 40.60 dB, which is better than that of the CAE’s 11.58 dB. The ultimate CR was increased to 512 without reducing the compression quality, which is 4.12 times higher than the CAE model. The LSTM with a weighted loss function improves the SNR to 43.66 dB at a CR of 8, which is 3.06 dB higher than the LSTM with additive loss function. The results show that the RAE model proposed with a weighted loss function in this paper has excellent DAS seismic data compression performance and provides a high CR, which can be widely applied in large-scale DAS seismic data compression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spirit 雪发布了新的文献求助10
刚刚
周芷卉发布了新的文献求助10
1秒前
Jun发布了新的文献求助10
1秒前
小平应助11111采纳,获得10
2秒前
Hello应助11111采纳,获得10
2秒前
燕海雪完成签到,获得积分20
3秒前
一行白鹭上青天完成签到,获得积分10
4秒前
5秒前
24K纯帅完成签到,获得积分10
5秒前
spirit 雪完成签到,获得积分10
6秒前
ppg123发布了新的文献求助10
6秒前
爆米花应助David采纳,获得10
7秒前
科研通AI2S应助Chridy采纳,获得10
7秒前
8秒前
sandse7en完成签到,获得积分10
8秒前
萧水白应助Qumay采纳,获得10
9秒前
apple发布了新的文献求助10
11秒前
科研通AI2S应助Sg采纳,获得10
13秒前
兔兔鑫完成签到,获得积分10
14秒前
天天发布了新的文献求助10
15秒前
ee发布了新的文献求助10
15秒前
17秒前
无限的千凝完成签到 ,获得积分10
19秒前
九鹤完成签到 ,获得积分10
20秒前
嘟嘟等文章完成签到,获得积分10
20秒前
陈陈发布了新的文献求助10
21秒前
sys549完成签到,获得积分10
22秒前
22秒前
22秒前
深情安青应助清颜采纳,获得10
22秒前
赘婿应助cookie采纳,获得10
23秒前
24秒前
科研通AI2S应助ee采纳,获得10
24秒前
谋学完成签到,获得积分10
25秒前
微笑一笑发布了新的文献求助10
25秒前
zho发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
维维发布了新的文献求助10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312373
求助须知:如何正确求助?哪些是违规求助? 2945014
关于积分的说明 8522631
捐赠科研通 2620796
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187