Deep learning model for fiber optic distributed acoustic sensing seismic data compression based on autoencoder and recurrent neural networks

自编码 计算机科学 深度学习 压缩比 数据压缩 压缩(物理) 卷积神经网络 数据压缩比 人工智能 图像压缩 工程类 材料科学 图像(数学) 复合材料 汽车工程 图像处理 内燃机
作者
Honghui Wang,Xike Yang,Shangkun Zeng,Tong Liu,Xiang Wang,Yiru Wang
出处
期刊:Applied Optics [The Optical Society]
卷期号:63 (20): 5303-5303
标识
DOI:10.1364/ao.527625
摘要

Because of the extremely high sampling rate of fiber optic distributed acoustic sensing (DAS) equipment, the amount of DAS seismic data collected is enormous, which poses great challenges to the transmission and storage of DAS seismic data. Therefore, it is essential to study the compression methods of DAS seismic data. Existing data compression methods such as wavelet transform, cosine transform, and convolutional autoencoder (CAE) still have room for improvement in the compression performance and compression ratio (CR). Thus, we have proposed what we believe to be is a novel deep learning model called the recurrent autoencoder (RAE) for high-performance compression of DAS seismic data. Under different CRs, we have designed performance evaluation experiments for RAE models based on different RNN modules with different loss functions. When the CR of the RAE model is 8, the signal-to-noise ratio (SNR) of the reconstructed DAS seismic data reaches 40.60 dB, which is better than that of the CAE’s 11.58 dB. The ultimate CR was increased to 512 without reducing the compression quality, which is 4.12 times higher than the CAE model. The LSTM with a weighted loss function improves the SNR to 43.66 dB at a CR of 8, which is 3.06 dB higher than the LSTM with additive loss function. The results show that the RAE model proposed with a weighted loss function in this paper has excellent DAS seismic data compression performance and provides a high CR, which can be widely applied in large-scale DAS seismic data compression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浦肯野举报单薄凌蝶求助涉嫌违规
1秒前
爱撒娇的橘子完成签到,获得积分10
1秒前
1秒前
Owen应助皮蛋瘦肉周采纳,获得10
2秒前
李漂亮完成签到,获得积分10
2秒前
222完成签到 ,获得积分10
2秒前
wzxxxx发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
文艺谷蓝完成签到,获得积分10
4秒前
丰富的复天完成签到,获得积分10
4秒前
干净的寒天完成签到,获得积分10
4秒前
科研通AI5应助WNL采纳,获得10
5秒前
无聊的面包完成签到,获得积分10
5秒前
5秒前
JIN完成签到,获得积分10
7秒前
Amber应助老疯智采纳,获得10
7秒前
星寒完成签到 ,获得积分10
7秒前
shen完成签到,获得积分10
9秒前
尊敬的发布了新的文献求助10
10秒前
zhenzhen发布了新的文献求助10
11秒前
11秒前
眼睛大的金鱼完成签到,获得积分10
11秒前
CipherSage应助不对也没错采纳,获得10
12秒前
曹梦梦发布了新的文献求助10
13秒前
JayWu完成签到,获得积分10
13秒前
13秒前
小马甲应助BaiX采纳,获得10
13秒前
大工梧桐发布了新的文献求助10
13秒前
香蕉君达完成签到,获得积分10
13秒前
14秒前
小马甲应助愉快的定帮采纳,获得10
14秒前
科目三应助自由刺猬采纳,获得20
15秒前
futing完成签到,获得积分10
15秒前
老鼠爱吃fish完成签到,获得积分10
15秒前
xiaoou完成签到,获得积分10
15秒前
科研通AI2S应助VDC采纳,获得10
16秒前
16秒前
胡天萌完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678