Universal statistics of hippocampal place fields across species and dimensionalities

统计物理学 高斯分布 阈值 海马结构 职位(财务) 计算机科学 简单(哲学) 感受野 放置单元格 人工神经网络 统计 人工智能 数学 物理 神经科学 生物 认识论 图像(数学) 哲学 经济 量子力学 财务
作者
Nischal Mainali,Rava Azeredo da Silveira,Yoram Burak
标识
DOI:10.1101/2024.06.11.597569
摘要

ABSTRACT Hippocampal place cells form a spatial map by selectively firing at specific locations in an animal’s environment 1 . Until recently the hippocampus appeared to implement a simple coding scheme for position, in which each neuron is assigned to a single region of space in which it is active 1 . Recently, new experiments revealed that the tuning of hippocampal neurons to space is much less stereotyped than previously thought: in large environments, place cells are active in multiple locations and their fields vary in shape and size across locations, with distributions that differ substantially in different experiments 2–7 . It is unknown whether these seemingly diverse observations can be explained in a unified manner, and whether the heterogeneous statistics can reveal the mechanisms that determine the tuning of neural activity to position. Here we show that a surprisingly simple mathematical model, in which firing fields are generated by thresholding a realization of a random Gaussian process, explains the statistical properties of neural activity in quantitative detail, in bats and rodents, and in one-, two-, and three-dimensional environments of varying sizes. The model captures the statistics of field arrangements, and further yields quantitative predictions on the statistics of field shapes and topologies, which we verify. Thus, the seemingly diverse statistics arise from mathematical principles that are common to different species and behavioral conditions. The underlying Gaussian statistics are compatible with a picture in which the synaptic connections between place cells and their inputs are random and highly unstructured.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静梦芝发布了新的文献求助10
1秒前
科研通AI2S应助高高手采纳,获得10
1秒前
谦让时光完成签到 ,获得积分10
1秒前
heisebeileimao应助long采纳,获得50
1秒前
酷波er应助暗暗搁浅采纳,获得10
1秒前
4秒前
暮色晚钟完成签到,获得积分10
5秒前
5秒前
领导范儿应助LWJ采纳,获得10
5秒前
5秒前
彭于晏应助清风采纳,获得10
5秒前
穆清完成签到,获得积分10
7秒前
bkagyin应助Galen采纳,获得10
7秒前
蟒玉朝天完成签到 ,获得积分10
7秒前
Market123580完成签到 ,获得积分10
7秒前
充电宝应助文静梦芝采纳,获得10
8秒前
研友_VZG7GZ应助shukq采纳,获得10
8秒前
8秒前
漂亮的黑猫完成签到,获得积分10
8秒前
知虾关注了科研通微信公众号
8秒前
科研通AI6.1应助素衣采纳,获得10
9秒前
jeff发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
嗒嗒发布了新的文献求助10
10秒前
11秒前
Treasure发布了新的文献求助10
11秒前
Hello应助WY采纳,获得10
11秒前
留胡子的裘完成签到 ,获得积分10
12秒前
漂亮的如花完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
赵翊发布了新的文献求助10
14秒前
15秒前
CipherSage应助dddddddd采纳,获得30
16秒前
尹二发布了新的文献求助10
16秒前
科研通AI2S应助ylh采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785018
求助须知:如何正确求助?哪些是违规求助? 5684842
关于积分的说明 15466115
捐赠科研通 4913942
什么是DOI,文献DOI怎么找? 2645068
邀请新用户注册赠送积分活动 1592871
关于科研通互助平台的介绍 1547270