Universal statistics of hippocampal place fields across species and dimensionalities

统计物理学 高斯分布 阈值 海马结构 职位(财务) 计算机科学 简单(哲学) 感受野 放置单元格 人工神经网络 统计 人工智能 数学 物理 神经科学 生物 认识论 图像(数学) 哲学 经济 量子力学 财务
作者
Nischal Mainali,Rava Azeredo da Silveira,Yoram Burak
标识
DOI:10.1101/2024.06.11.597569
摘要

ABSTRACT Hippocampal place cells form a spatial map by selectively firing at specific locations in an animal’s environment 1 . Until recently the hippocampus appeared to implement a simple coding scheme for position, in which each neuron is assigned to a single region of space in which it is active 1 . Recently, new experiments revealed that the tuning of hippocampal neurons to space is much less stereotyped than previously thought: in large environments, place cells are active in multiple locations and their fields vary in shape and size across locations, with distributions that differ substantially in different experiments 2–7 . It is unknown whether these seemingly diverse observations can be explained in a unified manner, and whether the heterogeneous statistics can reveal the mechanisms that determine the tuning of neural activity to position. Here we show that a surprisingly simple mathematical model, in which firing fields are generated by thresholding a realization of a random Gaussian process, explains the statistical properties of neural activity in quantitative detail, in bats and rodents, and in one-, two-, and three-dimensional environments of varying sizes. The model captures the statistics of field arrangements, and further yields quantitative predictions on the statistics of field shapes and topologies, which we verify. Thus, the seemingly diverse statistics arise from mathematical principles that are common to different species and behavioral conditions. The underlying Gaussian statistics are compatible with a picture in which the synaptic connections between place cells and their inputs are random and highly unstructured.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青青草发布了新的文献求助10
1秒前
1秒前
qing发布了新的文献求助10
1秒前
刘雪松完成签到,获得积分10
1秒前
霍焱发布了新的文献求助10
2秒前
Eric完成签到 ,获得积分10
2秒前
xingyi完成签到,获得积分10
3秒前
上官尔芙完成签到,获得积分10
4秒前
zcious完成签到,获得积分10
4秒前
闫星宇完成签到,获得积分10
7秒前
9秒前
9秒前
嘻嘻完成签到,获得积分10
9秒前
suxiang完成签到,获得积分10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Jared应助科研通管家采纳,获得20
10秒前
风清扬应助科研通管家采纳,获得30
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
Vanilla应助科研通管家采纳,获得20
11秒前
Jared应助科研通管家采纳,获得20
11秒前
风清扬应助科研通管家采纳,获得30
11秒前
11秒前
风清扬应助科研通管家采纳,获得30
11秒前
Vanilla应助科研通管家采纳,获得20
11秒前
风清扬应助科研通管家采纳,获得30
11秒前
stiger应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
光亮向真完成签到,获得积分10
12秒前
独行侠杨进步完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
青青草完成签到,获得积分10
15秒前
贪玩的网络完成签到 ,获得积分10
16秒前
惊鸿H完成签到 ,获得积分10
16秒前
鹤昀完成签到 ,获得积分10
17秒前
zero完成签到,获得积分10
17秒前
Litchi完成签到 ,获得积分10
18秒前
Danboard完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733187
求助须知:如何正确求助?哪些是违规求助? 5346686
关于积分的说明 15323180
捐赠科研通 4878353
什么是DOI,文献DOI怎么找? 2621161
邀请新用户注册赠送积分活动 1570287
关于科研通互助平台的介绍 1527172