Universal statistics of hippocampal place fields across species and dimensionalities

统计物理学 高斯分布 阈值 海马结构 职位(财务) 计算机科学 简单(哲学) 感受野 放置单元格 人工神经网络 统计 人工智能 数学 物理 神经科学 生物 认识论 图像(数学) 哲学 经济 量子力学 财务
作者
Nischal Mainali,Rava Azeredo da Silveira,Yoram Burak
标识
DOI:10.1101/2024.06.11.597569
摘要

ABSTRACT Hippocampal place cells form a spatial map by selectively firing at specific locations in an animal’s environment 1 . Until recently the hippocampus appeared to implement a simple coding scheme for position, in which each neuron is assigned to a single region of space in which it is active 1 . Recently, new experiments revealed that the tuning of hippocampal neurons to space is much less stereotyped than previously thought: in large environments, place cells are active in multiple locations and their fields vary in shape and size across locations, with distributions that differ substantially in different experiments 2–7 . It is unknown whether these seemingly diverse observations can be explained in a unified manner, and whether the heterogeneous statistics can reveal the mechanisms that determine the tuning of neural activity to position. Here we show that a surprisingly simple mathematical model, in which firing fields are generated by thresholding a realization of a random Gaussian process, explains the statistical properties of neural activity in quantitative detail, in bats and rodents, and in one-, two-, and three-dimensional environments of varying sizes. The model captures the statistics of field arrangements, and further yields quantitative predictions on the statistics of field shapes and topologies, which we verify. Thus, the seemingly diverse statistics arise from mathematical principles that are common to different species and behavioral conditions. The underlying Gaussian statistics are compatible with a picture in which the synaptic connections between place cells and their inputs are random and highly unstructured.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slb1319完成签到,获得积分10
刚刚
Yu完成签到,获得积分10
1秒前
彭于晏应助帅b采纳,获得10
1秒前
2秒前
3秒前
4秒前
文静香薇发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI6应助oneday采纳,获得10
4秒前
5秒前
6秒前
6秒前
7秒前
Able_sci发布了新的文献求助10
7秒前
orixero应助Quhang采纳,获得10
7秒前
小熊软糖完成签到,获得积分10
8秒前
8秒前
迪迪发布了新的文献求助10
9秒前
小熊饼干发布了新的文献求助10
10秒前
wwww发布了新的文献求助10
10秒前
luping28完成签到,获得积分10
11秒前
wxzk发布了新的文献求助10
11秒前
msf0073完成签到,获得积分10
12秒前
科研通AI6应助背后的大米采纳,获得30
12秒前
Lucas应助侃侃采纳,获得30
14秒前
14秒前
14秒前
英勇若菱完成签到,获得积分10
14秒前
15秒前
科目三应助宋依依采纳,获得10
15秒前
cc发布了新的文献求助10
15秒前
16秒前
隐形曼青应助高高碧采纳,获得10
17秒前
ZSR完成签到,获得积分10
18秒前
雪雪完成签到 ,获得积分10
18秒前
完美世界应助xxxx采纳,获得10
18秒前
18秒前
文艺白晴发布了新的文献求助10
19秒前
李健的小迷弟应助CQ采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573