Enhanced robotic tactile perception with spatiotemporal sensing and logical reasoning for robust object recognition

人工智能 感知 计算机科学 对象(语法) 计算机视觉 视觉对象识别的认知神经科学 机器人学 触觉知觉 触觉传感器 模式识别(心理学) 机器人 神经科学 生物
作者
Qian Mao,Rong Zhu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:11 (2) 被引量:2
标识
DOI:10.1063/5.0176343
摘要

Since tactile sensing provides rich and delicate sensations, touch-based object recognition has attracted public attention and has been extensively developed for robots. However, robotic grasping recognition in real-life scenarios is highly challenging due to the complexity of real-life objects in shapes, sizes, and other details, as well as the uncertainty of real grabs in orientations and locations. Here, we propose a novel robotic tactile sensing method, utilizing the spatiotemporal sensing of multimodal tactile sensors acquired during hand grasping to simultaneously perceive multi-attributes of the grasped object, including thermal conductivity, thermal diffusivity, surface roughness, contact pressure, and temperature. Multimodal perception of thermal attributes (thermal conductivity, diffusivity, and temperature) and mechanical attributes (roughness and contact pressure) greatly enhance the robotic ability to recognize objects. To further overcome the complexity and uncertainty in real-life grasping recognition, inspired by human logical reasoning “from easy to hard” in solving puzzles, we propose a novel cascade classifier using multilayered long short-term memory neural networks to hierarchically identify objects according to their features. With the enhanced multimodal perception ability of tactile sensors and the novel cascade classifier, the robotic grasping recognition achieves a high recognition accuracy of 98.85% in discriminating diverse garbage objects, showing excellent generalizability. The proposed spatiotemporal tactile sensing with logical reasoning strategy overcomes the difficulty of robotic object recognition in complex real-life scenes and facilitates its practical applications in our daily lives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ekko完成签到,获得积分10
刚刚
刚刚
2秒前
JamesPei应助科研通管家采纳,获得20
2秒前
ding应助科研通管家采纳,获得10
2秒前
Ava应助快来吃甜瓜采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得30
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Chaos发布了新的文献求助10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
我是老大应助shendu采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
popvich应助111清采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
馆长应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Hello应助椒闫皮皮虾采纳,获得10
4秒前
抹茶夏天完成签到,获得积分10
5秒前
5秒前
wfrg完成签到,获得积分10
5秒前
zt完成签到,获得积分10
5秒前
6秒前
吉克发布了新的文献求助10
7秒前
帅气书白发布了新的文献求助10
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055