Multi-UAVs assisted path planning method for terrain-oriented air-ground collaborative vehicular network architecture

地形 建筑 运动规划 计算机科学 地面运输 路径(计算) 运输工程 计算机网络 人工智能 工程类 地理 机器人 地图学 考古
作者
He Huang,Xialu Wen,Mingbo Niu,Md Sipon Miah,Tao Gao,Huifeng Wang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:5
标识
DOI:10.1109/tiv.2024.3402434
摘要

The application of air-ground collaborative network has become increasingly widespread in intelligent vehicular systems. In order to effectively utilize multiple unmanned aerial vehicles (UAVs) to provide fast services and improve resource allocation for air-ground vehicular network, this paper proposes a 3D terrain-oriented path planning algorithm for multi-UAVs assisted intelligent vehicular network based on swarm intelligence optimization. It is aimed to address UAVs' air-ground path planning in complex 3D terrains, requiring substantial computation. However, the current multi-objective bald eagle search algorithm tends to approach the center point, resulting in low accuracy when solving such problems. Firstly, the 3D terrain environment model, threat source model, and other models were constructed, and the multi-objective cost function was determined. Secondly, a coupled chaotic map initialization was designed to effectively improve the quality of the initialized population. In addition, an adaptive Gaussian walk strategy based on the "reconnaissance eagle" was designed to balance development and search capabilities. The fast non-dominated sorting was introduced to further improve the algorithmic efficiency. Finally, we utilized the correlation between the position of the bald eagle and UAV flight parameters of speed, turning angle, and climbing angle. An improved multi-objective bald eagle search (IMBES) was designed to efficiently search for UAV configuration space and find the optimal Pareto front. The experimental results show that the designed IMBES algorithm has a success rate of 70.50%. This proposed method offers improved optimization ability, smoother paths, and reduced energy consumption for optimizing collaborative terrain-oriented air-ground path planning, compared with existing path planning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助朴素的士晋采纳,获得10
2秒前
2秒前
SCI完成签到,获得积分10
3秒前
hh完成签到 ,获得积分10
3秒前
Ayyy完成签到,获得积分20
3秒前
香蕉觅云应助慕迎蕾采纳,获得10
3秒前
5秒前
5秒前
Owen应助钟离采纳,获得10
5秒前
北74发布了新的文献求助10
6秒前
7秒前
nono发布了新的文献求助10
7秒前
8秒前
9秒前
自然归尘发布了新的文献求助10
10秒前
今后应助Shan采纳,获得10
11秒前
谨慎的雁桃应助滕擎采纳,获得10
11秒前
小二郎应助北74采纳,获得10
12秒前
未耕发布了新的文献求助10
13秒前
JIUR发布了新的文献求助10
13秒前
小啊三发布了新的文献求助10
13秒前
pluto应助学不完也学不会采纳,获得30
14秒前
爆米花应助dmj采纳,获得10
14秒前
丘比特应助贪玩半芹采纳,获得10
15秒前
爱果果完成签到 ,获得积分10
19秒前
打打应助未耕采纳,获得10
19秒前
19秒前
SciGPT应助Torrian采纳,获得10
21秒前
superbanggg完成签到,获得积分10
21秒前
汉堡包应助慕迎蕾采纳,获得10
22秒前
小马甲应助奥特超曼采纳,获得10
23秒前
谦让夏寒发布了新的文献求助10
23秒前
时尚东蒽完成签到,获得积分10
25秒前
26秒前
草木发布了新的文献求助10
26秒前
meta完成签到 ,获得积分10
27秒前
henry先森完成签到,获得积分10
30秒前
31秒前
小羽毛完成签到 ,获得积分10
31秒前
高分求助中
Востребованный временем 2500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
图片求出处 Agentic RAG Workflow 500
Principles of Ultraviolet Photoelectron Spectroscopy 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3429938
求助须知:如何正确求助?哪些是违规求助? 3028466
关于积分的说明 8928654
捐赠科研通 2716095
什么是DOI,文献DOI怎么找? 1489855
科研通“疑难数据库(出版商)”最低求助积分说明 688551
邀请新用户注册赠送积分活动 684410