无线电技术
骨关节炎
入射(几何)
人工神经网络
医学
物理医学与康复
物理疗法
人工智能
计算机科学
病理
替代医学
数学
几何学
作者
Shengfa Li,Peihua Cao,Jia Li,Tianyu Chen,Ping Luo,Guangfeng Ruan,Yan Zhang,Xiaoshuai Wang,Weiyu Han,Zhaohua Zhu,Qin Dang,Qianyi Wang,Mengdi Zhang,Qing-Xian Bai,Zhiyi Chai,Jing Wang,Haowei Chen,Mingze Tang,A. N. Akbar,Alexander Tack,David J. Hunter,Changhai Ding
摘要
Accurately predicting knee osteoarthritis (KOA) is essential for early detection and personalized treatment. We aimed to develop and test a magnetic resonance imaging (MRI)-based joint space (JS) radiomic model (RM) to predict radiographic KOA incidence through neural networks by integrating meniscus and femorotibial cartilage radiomic features.
科研通智能强力驱动
Strongly Powered by AbleSci AI