体内
受体
配体(生物化学)
普萘洛尔
体外
化学
生物物理学
部分
立体化学
生物化学
生物
内分泌学
遗传学
作者
Shuang Shi,Yang Zheng,Joëlle Goulding,Silvia Marri,Laura Lucarini,Benjamin Konecny,Silvia Sgambellone,Serafina Villano,Reggie Bosma,Maikel Wijtmans,Stephen J. Briddon,Barbara Zarzycka,Henry F. Vischer,Rob Leurs
标识
DOI:10.1016/j.bcp.2024.116396
摘要
This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of β2-adrenoceptor (β2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher β2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound β2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of β2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of β2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible β2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in β2AR-associated pathologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI