富勒烯
材料科学
钙钛矿(结构)
纳米技术
有机太阳能电池
阴极
能量转换效率
光伏
串联
电子传输链
光电子学
光伏系统
化学工程
聚合物
化学
生态学
生物化学
有机化学
工程类
复合材料
生物
物理化学
作者
Han Wang,Chenyang Zhang,Yiguo Yao,Caidong Cheng,Kai Wang
出处
期刊:Small
[Wiley]
日期:2024-06-26
卷期号:20 (43)
被引量:4
标识
DOI:10.1002/smll.202403193
摘要
Inverted perovskite solar cells (PSCs) attract continuing interest due to their low processing temperature, suppressed hysteresis, and compatibility with tandem cells. Considerable progress has been made with reported power conversion efficiency (PCE) surpassing 26%. Electron transport Materials (ETMs) play a critical role in achieving high-performance PSCs because they not only govern electron extraction and transport from the perovskite layer to the cathode, but also protect the perovskite from contact with ambient environment. On the other hand, the non-radiative recombination losses at the perovskite/ETM interface also limits the future development of PSCs. Compared with fullerene derivatives, non-fullerene n-type organic semiconductors feature advantages like molecular structure diversity, adjustable energy level, and easy modification. Herein, the non-fullerene ETM is systematically summarized based on the molecular functionalization strategy. Various types of molecular design approaches for producing non-fullerene ETM are presented, and the insight on relationship of chemical structure and device performance is discussed. Meantime, the future trend of non-fullerene ETM is analyzed. It is hoped that this review provides insightful perspective for the innovation of new non-fullerene ETMs toward more efficient and stable PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI