Zebrafish Avatar-test forecasts clinical response to chemotherapy in patients with colorectal cancer

结直肠癌 医学 斑马鱼 临床试验 肿瘤科 考试(生物学) 内科学 癌症 化疗 生物 生物化学 基因 古生物学
作者
Bruna Costa,Marta F Estrada,António Gomes,Laura M. Fernández,José Azevedo,Vanda Póvoa,Magnus Fontes,António Alves,António Galzerano,Mireia Castillo-Martín,Alberto Ignacio Herrando,S Soares Brandao,Carolina Carneiro,Vitor Moreira Nunes,Carlos Carvalho,Amjad Parvaiz,Ana Marreiros,Rita Fior
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:2
标识
DOI:10.1038/s41467-024-49051-0
摘要

Abstract Cancer patients often undergo rounds of trial-and-error to find the most effective treatment because there is no test in the clinical practice for predicting therapy response. Here, we conduct a clinical study to validate the zebrafish patient-derived xenograft model (zAvatar) as a fast predictive platform for personalized treatment in colorectal cancer. zAvatars are generated with patient tumor cells, treated exactly with the same therapy as their corresponding patient and analyzed at single-cell resolution. By individually comparing the clinical responses of 55 patients with their zAvatar-test, we develop a decision tree model integrating tumor stage, zAvatar-apoptosis, and zAvatar-metastatic potential. This model accurately forecasts patient progression with 91% accuracy. Importantly, patients with a sensitive zAvatar-test exhibit longer progression-free survival compared to those with a resistant test. We propose the zAvatar-test as a rapid approach to guide clinical decisions, optimizing treatment options and improving the survival of cancer patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助HHHH采纳,获得10
1秒前
5秒前
5秒前
11111发布了新的文献求助10
10秒前
mmm发布了新的文献求助10
12秒前
Behappy完成签到 ,获得积分10
14秒前
慕青应助11111采纳,获得10
18秒前
布干维尔岛耐摔王完成签到,获得积分10
21秒前
23秒前
23秒前
23秒前
Akim应助hunajx采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
SPARK应助科研通管家采纳,获得10
24秒前
无极微光应助科研通管家采纳,获得20
24秒前
SPARK应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
24秒前
29秒前
咚咚咚完成签到 ,获得积分10
30秒前
HHHH发布了新的文献求助10
32秒前
wxyshare应助车访枫采纳,获得10
33秒前
街道办柏阿姨完成签到 ,获得积分10
34秒前
andrew完成签到,获得积分10
37秒前
轻语完成签到 ,获得积分10
37秒前
Lucas应助11111采纳,获得30
39秒前
taster发布了新的文献求助10
41秒前
HHHH完成签到,获得积分10
42秒前
wanci应助mmm采纳,获得10
43秒前
着急的诗兰完成签到,获得积分10
43秒前
bingbing完成签到,获得积分10
44秒前
淅淅发布了新的文献求助10
45秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852198
求助须知:如何正确求助?哪些是违规求助? 6276834
关于积分的说明 15627779
捐赠科研通 4968069
什么是DOI,文献DOI怎么找? 2678890
邀请新用户注册赠送积分活动 1623161
关于科研通互助平台的介绍 1579518