A New Point Cloud Simplification Algorithm Based on V-P Container Constraint and Normal Vector Angle Information Entropy

算法 云计算 点云 熵(时间箭头) 约束(计算机辅助设计) 计算机科学 容器(类型理论) 数学 几何学 物理 人工智能 工程类 机械工程 量子力学 操作系统
作者
Wei Zhu,Weihua Li,Lianglin Liu,Jiuming Li,Feng Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad54e4
摘要

Abstract Most point cloud simplification algorithms use k-order neighborhood parameters, which are set by human experience; thus, the accuracy of point feature information is not high, and each point is repeatedly calculated simultaneously. The proposed method avoids this problem. The first ordinal point of the original point cloud file was used as the starting point, and the same spatial domain was then described. The design method filters out points located in the same spatial domain and stores them in the same V-P container. The normal vector angle information entropy was calculated for each point in each container. Points with information entropy values that met the threshold requirements were extracted and stored as simplified points and new seed points. In the second operation, a point from the seed point set was selected as the starting point for the operation. The same process was repeated as the first operation. After the operation, the point from the seed point set was deleted. This process was repeated until the seed point set was empty and the algorithm ended. The simplified point set thus obtained was the simplified result. Five experimental datasets were selected and compared using the five advanced methods. The results indicate that the proposed method maintains a simplification rate of over 82% and reduces the maximum error, average error, and Hausdorff distance by 0.1099, 0.074, and 0.0062 (the highest values among the five datasets), respectively. This method has superior performance for single object and multi object point cloud sets, particularly as a reference for the study of simplified algorithms for more complex, multi object and ultra-large point cloud sets obtained using terrestrial laser scanning and mobile laser scanning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
酷波er应助舒适的紫丝采纳,获得10
1秒前
2秒前
2秒前
2秒前
猫duoduo发布了新的文献求助10
2秒前
ting发布了新的文献求助10
2秒前
深情安青应助Rando采纳,获得10
2秒前
3秒前
小二郎应助高大的可仁采纳,获得10
3秒前
3秒前
yqq发布了新的文献求助10
3秒前
acatao完成签到,获得积分20
3秒前
Chenst完成签到,获得积分10
4秒前
4秒前
5秒前
pearl发布了新的文献求助10
5秒前
温暖半芹发布了新的文献求助10
5秒前
霸气的人生完成签到,获得积分20
5秒前
赘婿应助YZC采纳,获得200
6秒前
HJJHJH发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
orixero应助Maestro_S采纳,获得10
6秒前
6秒前
爆米花应助Milder采纳,获得10
6秒前
Ava应助小鹿乱撞采纳,获得10
7秒前
Asystasia7完成签到,获得积分10
7秒前
今后应助开心不评采纳,获得10
7秒前
满意曼荷完成签到,获得积分10
7秒前
抹茶泡泡完成签到 ,获得积分10
8秒前
lyf完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
满意的紫烟完成签到,获得积分10
9秒前
CodeCraft应助Camellia采纳,获得10
9秒前
墨雪归青发布了新的文献求助10
9秒前
benny发布了新的文献求助10
9秒前
10秒前
酷波er应助lo采纳,获得30
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271