A New Point Cloud Simplification Algorithm Based on V-P Container Constraint and Normal Vector Angle Information Entropy

算法 云计算 点云 熵(时间箭头) 约束(计算机辅助设计) 计算机科学 容器(类型理论) 数学 几何学 物理 人工智能 工程类 机械工程 量子力学 操作系统
作者
Wei Zhu,Weihua Li,Lianglin Liu,Jiuming Li,Feng Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad54e4
摘要

Abstract Most point cloud simplification algorithms use k-order neighborhood parameters, which are set by human experience; thus, the accuracy of point feature information is not high, and each point is repeatedly calculated simultaneously. The proposed method avoids this problem. The first ordinal point of the original point cloud file was used as the starting point, and the same spatial domain was then described. The design method filters out points located in the same spatial domain and stores them in the same V-P container. The normal vector angle information entropy was calculated for each point in each container. Points with information entropy values that met the threshold requirements were extracted and stored as simplified points and new seed points. In the second operation, a point from the seed point set was selected as the starting point for the operation. The same process was repeated as the first operation. After the operation, the point from the seed point set was deleted. This process was repeated until the seed point set was empty and the algorithm ended. The simplified point set thus obtained was the simplified result. Five experimental datasets were selected and compared using the five advanced methods. The results indicate that the proposed method maintains a simplification rate of over 82% and reduces the maximum error, average error, and Hausdorff distance by 0.1099, 0.074, and 0.0062 (the highest values among the five datasets), respectively. This method has superior performance for single object and multi object point cloud sets, particularly as a reference for the study of simplified algorithms for more complex, multi object and ultra-large point cloud sets obtained using terrestrial laser scanning and mobile laser scanning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
椰椰完成签到 ,获得积分10
2秒前
hh完成签到 ,获得积分10
3秒前
柯一一应助Gaojuan采纳,获得10
3秒前
七月发布了新的文献求助20
4秒前
4秒前
红雪0801完成签到,获得积分10
5秒前
我是老大应助念姬采纳,获得10
6秒前
Billy应助rune采纳,获得10
7秒前
顺顺顺顺发布了新的文献求助10
9秒前
万能图书馆应助Decline采纳,获得10
10秒前
11秒前
12秒前
binz完成签到,获得积分10
13秒前
田超完成签到,获得积分10
14秒前
15秒前
今后应助瞿寒采纳,获得10
18秒前
coconut发布了新的文献求助10
18秒前
18秒前
猪猪hero应助limeOrca采纳,获得10
20秒前
红雪0801发布了新的文献求助10
21秒前
归尘发布了新的文献求助20
22秒前
胡杨树2006完成签到,获得积分10
23秒前
谦让以筠发布了新的文献求助10
23秒前
zhangpp发布了新的文献求助10
26秒前
纪震宇发布了新的文献求助10
27秒前
28秒前
王崇霖发布了新的文献求助10
32秒前
33秒前
NexusExplorer应助Marciu33采纳,获得20
36秒前
CodeCraft应助周游采纳,获得10
36秒前
瞿寒发布了新的文献求助10
38秒前
38秒前
天天快乐应助xiaoxiao采纳,获得10
38秒前
zhangpp完成签到,获得积分10
38秒前
38秒前
39秒前
打打应助骑驴找马采纳,获得10
40秒前
40秒前
朱光辉完成签到,获得积分10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579