A New Point Cloud Simplification Algorithm Based on V-P Container Constraint and Normal Vector Angle Information Entropy

算法 云计算 点云 熵(时间箭头) 约束(计算机辅助设计) 计算机科学 容器(类型理论) 数学 几何学 物理 人工智能 工程类 机械工程 量子力学 操作系统
作者
Wei Zhu,Weihua Li,Lianglin Liu,Jiuming Li,Feng Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad54e4
摘要

Abstract Most point cloud simplification algorithms use k-order neighborhood parameters, which are set by human experience; thus, the accuracy of point feature information is not high, and each point is repeatedly calculated simultaneously. The proposed method avoids this problem. The first ordinal point of the original point cloud file was used as the starting point, and the same spatial domain was then described. The design method filters out points located in the same spatial domain and stores them in the same V-P container. The normal vector angle information entropy was calculated for each point in each container. Points with information entropy values that met the threshold requirements were extracted and stored as simplified points and new seed points. In the second operation, a point from the seed point set was selected as the starting point for the operation. The same process was repeated as the first operation. After the operation, the point from the seed point set was deleted. This process was repeated until the seed point set was empty and the algorithm ended. The simplified point set thus obtained was the simplified result. Five experimental datasets were selected and compared using the five advanced methods. The results indicate that the proposed method maintains a simplification rate of over 82% and reduces the maximum error, average error, and Hausdorff distance by 0.1099, 0.074, and 0.0062 (the highest values among the five datasets), respectively. This method has superior performance for single object and multi object point cloud sets, particularly as a reference for the study of simplified algorithms for more complex, multi object and ultra-large point cloud sets obtained using terrestrial laser scanning and mobile laser scanning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助strings采纳,获得10
刚刚
科研通AI2S应助abner采纳,获得10
1秒前
自然的雅琴应助白华苍松采纳,获得10
2秒前
颜鑫完成签到 ,获得积分10
6秒前
claud完成签到 ,获得积分10
9秒前
SHD完成签到 ,获得积分10
9秒前
10秒前
顾矜应助蛰伏的小宇宙采纳,获得10
11秒前
莫道桑榆完成签到,获得积分10
12秒前
tong发布了新的文献求助10
13秒前
14秒前
aguo完成签到 ,获得积分10
15秒前
时光完成签到,获得积分10
16秒前
652183758完成签到 ,获得积分10
17秒前
挪威的森林完成签到 ,获得积分10
18秒前
唠叨的傲薇完成签到,获得积分10
18秒前
19秒前
21秒前
Ldq发布了新的文献求助10
25秒前
一一应助科研通管家采纳,获得20
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
奋斗天德发布了新的文献求助10
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
SSSAPO应助科研通管家采纳,获得10
25秒前
绵绵球应助科研通管家采纳,获得20
25秒前
一一应助科研通管家采纳,获得20
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
26秒前
一一应助科研通管家采纳,获得20
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
29秒前
31秒前
Adeline发布了新的文献求助30
33秒前
33秒前
strings完成签到,获得积分10
34秒前
秀丽的初柔完成签到,获得积分10
36秒前
xzc完成签到,获得积分10
36秒前
strings发布了新的文献求助10
38秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023