亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Twins Transformer: Rolling Bearing Fault Diagnosis based on Cross-attention Fusion of Time and Frequency Domain Features

融合 变压器 频域 方位(导航) 断层(地质) 计算机科学 时域 人工智能 工程类 地质学 电气工程 计算机视觉 电压 地震学 哲学 语言学
作者
Zhikang Gao,Yanxue Wang,Xinming Li,Jiachi Yao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096113-096113 被引量:7
标识
DOI:10.1088/1361-6501/ad53f1
摘要

Abstract Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model’s performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47% and 99.41%. These results confirm the model’s effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziguangrong发布了新的文献求助10
3秒前
白潇潇完成签到 ,获得积分10
5秒前
6秒前
努力搞科研完成签到,获得积分10
7秒前
11秒前
鹿芗泽发布了新的文献求助10
14秒前
敬业乐群完成签到,获得积分10
14秒前
mumu完成签到,获得积分10
16秒前
月关完成签到 ,获得积分10
21秒前
晚街听风完成签到 ,获得积分10
30秒前
繁星背后完成签到 ,获得积分10
32秒前
33秒前
柠檬树发布了新的文献求助10
36秒前
无花果应助刘言采纳,获得10
43秒前
坚强觅珍完成签到 ,获得积分10
52秒前
58秒前
Lan完成签到 ,获得积分10
59秒前
欣慰小蕊完成签到,获得积分10
59秒前
CHORHIN发布了新的文献求助10
59秒前
Alpha完成签到 ,获得积分10
1分钟前
1分钟前
刘言发布了新的文献求助10
1分钟前
宝贝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzy发布了新的文献求助10
1分钟前
ll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CodeCraft应助madoudou采纳,获得10
1分钟前
刘言完成签到,获得积分20
1分钟前
1分钟前
守一完成签到,获得积分10
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
无花果应助榴莲柿子茶采纳,获得10
1分钟前
CHORHIN完成签到,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助TT采纳,获得10
1分钟前
大龙完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535