3D Vessel Segmentation With Limited Guidance of 2D Structure-Agnostic Vessel Annotations

体素 分割 计算机科学 判别式 人工智能 注释 树(集合论) 模式识别(心理学) 一致性(知识库) 计算机视觉 数学 数学分析
作者
Huai Chen,Xiuying Wang,Hui Li,Lisheng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5410-5421 被引量:1
标识
DOI:10.1109/jbhi.2024.3409382
摘要

Delineating 3D blood vessels of various anatomical structures is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Although recent supervised deep learning models have demonstrated their superior capacity in automatic 3D vessel segmentation, the reliance on expensive 3D manual annotations and limited capacity for annotation reuse among different vascular structures hinder their clinical applications. To avoid the repetitive and costly annotating process for each vascular structure and make full use of existing annotations, this paper proposes a novel 3D shape-guided local discrimination (3D-SLD) model for 3D vascular segmentation under limited guidance from public 2D vessel annotations. The primary hypothesis is that 3D vessels are composed of semantically similar voxels and often exhibit tree-shaped morphology. Accordingly, the 3D region discrimination loss is firstly proposed to learn the discriminative representation measuring voxel-wise similarities and cluster semantically consistent voxels to form the candidate 3D vascular segmentation in unlabeled images. Secondly, the shape distribution from existing 2D structure-agnostic vessel annotations is introduced to guide the 3D vessels with the tree-shaped morphology by the adversarial shape constraint loss. Thirdly, to enhance training stability and prediction credibility, the highlighting-reviewing-summarizing (HRS) mechanism is proposed. This mechanism involves summarizing historical models to maintain temporal consistency and identifying credible pseudo labels as reliable supervision signals. Only guided by public 2D coronary artery annotations, our method achieves results comparable to SOTA barely-supervised methods in 3D cerebrovascular segmentation, and the best DSC in 3D hepatic vessel segmentation, demonstrating the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不爱科研发布了新的文献求助10
刚刚
刚刚
如果天气好的话完成签到,获得积分10
1秒前
1秒前
曹飒丽完成签到,获得积分10
1秒前
清秀翠风完成签到,获得积分10
2秒前
激昂的元绿完成签到,获得积分10
3秒前
xiami完成签到,获得积分10
3秒前
3秒前
110o完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
孤独的自中完成签到 ,获得积分10
4秒前
ilihe应助踏实凝云采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
CipherSage应助123采纳,获得10
7秒前
猫咪完成签到,获得积分10
7秒前
aaaaaa完成签到,获得积分10
7秒前
上官若男应助撒玉采纳,获得10
7秒前
科研通AI6应助子辰采纳,获得10
8秒前
爆米花应助子辰采纳,获得10
8秒前
9秒前
BBy_Smile发布了新的文献求助10
10秒前
张雨露完成签到 ,获得积分10
10秒前
10秒前
10秒前
wjx发布了新的文献求助10
11秒前
Orange应助快乐花卷采纳,获得10
11秒前
小二郎应助小张采纳,获得10
11秒前
12秒前
科研通AI6应助Canary采纳,获得10
13秒前
轻凌miku完成签到,获得积分20
13秒前
13秒前
科研通AI6应助林天采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401