亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D Vessel Segmentation With Limited Guidance of 2D Structure-Agnostic Vessel Annotations

体素 分割 计算机科学 判别式 人工智能 注释 树(集合论) 模式识别(心理学) 一致性(知识库) 计算机视觉 数学 数学分析
作者
Huai Chen,Xiuying Wang,Hui Li,Lisheng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5410-5421 被引量:1
标识
DOI:10.1109/jbhi.2024.3409382
摘要

Delineating 3D blood vessels of various anatomical structures is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Although recent supervised deep learning models have demonstrated their superior capacity in automatic 3D vessel segmentation, the reliance on expensive 3D manual annotations and limited capacity for annotation reuse among different vascular structures hinder their clinical applications. To avoid the repetitive and costly annotating process for each vascular structure and make full use of existing annotations, this paper proposes a novel 3D shape-guided local discrimination (3D-SLD) model for 3D vascular segmentation under limited guidance from public 2D vessel annotations. The primary hypothesis is that 3D vessels are composed of semantically similar voxels and often exhibit tree-shaped morphology. Accordingly, the 3D region discrimination loss is firstly proposed to learn the discriminative representation measuring voxel-wise similarities and cluster semantically consistent voxels to form the candidate 3D vascular segmentation in unlabeled images. Secondly, the shape distribution from existing 2D structure-agnostic vessel annotations is introduced to guide the 3D vessels with the tree-shaped morphology by the adversarial shape constraint loss. Thirdly, to enhance training stability and prediction credibility, the highlighting-reviewing-summarizing (HRS) mechanism is proposed. This mechanism involves summarizing historical models to maintain temporal consistency and identifying credible pseudo labels as reliable supervision signals. Only guided by public 2D coronary artery annotations, our method achieves results comparable to SOTA barely-supervised methods in 3D cerebrovascular segmentation, and the best DSC in 3D hepatic vessel segmentation, demonstrating the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
34秒前
breeze发布了新的文献求助10
46秒前
volunteer完成签到 ,获得积分10
48秒前
1分钟前
1分钟前
1分钟前
purple发布了新的文献求助30
1分钟前
科研通AI6应助breeze采纳,获得100
1分钟前
昭昭关注了科研通微信公众号
1分钟前
行走完成签到,获得积分10
1分钟前
星启完成签到 ,获得积分10
1分钟前
wanci应助purple采纳,获得10
1分钟前
corleeang完成签到 ,获得积分10
1分钟前
1分钟前
蓝色花园发布了新的文献求助10
1分钟前
咿呀咿呀哟应助bibi猪采纳,获得20
2分钟前
2分钟前
水水的发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Wang完成签到 ,获得积分20
3分钟前
4分钟前
purple发布了新的文献求助10
4分钟前
完美世界应助柯亦云采纳,获得10
4分钟前
4分钟前
4分钟前
柯亦云发布了新的文献求助10
4分钟前
5分钟前
下一周完成签到,获得积分10
5分钟前
breeze发布了新的文献求助20
5分钟前
满意的伊完成签到,获得积分10
5分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
breeze发布了新的文献求助100
6分钟前
两袖清风完成签到 ,获得积分10
6分钟前
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450047
求助须知:如何正确求助?哪些是违规求助? 4557979
关于积分的说明 14265242
捐赠科研通 4481271
什么是DOI,文献DOI怎么找? 2454754
邀请新用户注册赠送积分活动 1445533
关于科研通互助平台的介绍 1421425