3D Vessel Segmentation With Limited Guidance of 2D Structure-Agnostic Vessel Annotations

体素 分割 计算机科学 判别式 人工智能 注释 树(集合论) 模式识别(心理学) 一致性(知识库) 计算机视觉 数学 数学分析
作者
Huai Chen,Xiuying Wang,Hui Li,Lisheng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5410-5421 被引量:1
标识
DOI:10.1109/jbhi.2024.3409382
摘要

Delineating 3D blood vessels of various anatomical structures is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Although recent supervised deep learning models have demonstrated their superior capacity in automatic 3D vessel segmentation, the reliance on expensive 3D manual annotations and limited capacity for annotation reuse among different vascular structures hinder their clinical applications. To avoid the repetitive and costly annotating process for each vascular structure and make full use of existing annotations, this paper proposes a novel 3D shape-guided local discrimination (3D-SLD) model for 3D vascular segmentation under limited guidance from public 2D vessel annotations. The primary hypothesis is that 3D vessels are composed of semantically similar voxels and often exhibit tree-shaped morphology. Accordingly, the 3D region discrimination loss is firstly proposed to learn the discriminative representation measuring voxel-wise similarities and cluster semantically consistent voxels to form the candidate 3D vascular segmentation in unlabeled images. Secondly, the shape distribution from existing 2D structure-agnostic vessel annotations is introduced to guide the 3D vessels with the tree-shaped morphology by the adversarial shape constraint loss. Thirdly, to enhance training stability and prediction credibility, the highlighting-reviewing-summarizing (HRS) mechanism is proposed. This mechanism involves summarizing historical models to maintain temporal consistency and identifying credible pseudo labels as reliable supervision signals. Only guided by public 2D coronary artery annotations, our method achieves results comparable to SOTA barely-supervised methods in 3D cerebrovascular segmentation, and the best DSC in 3D hepatic vessel segmentation, demonstrating the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿峤完成签到,获得积分10
1秒前
完美世界应助简单小鸭子采纳,获得10
2秒前
小学生1号完成签到 ,获得积分10
2秒前
3秒前
yb716发布了新的文献求助10
3秒前
欣慰弘文完成签到,获得积分10
3秒前
4秒前
ao发布了新的文献求助10
5秒前
英姑应助Tacit采纳,获得10
5秒前
小蘑菇应助hbhbj采纳,获得10
5秒前
perple发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
副掌门完成签到,获得积分10
6秒前
源孤律醒完成签到 ,获得积分10
6秒前
称心的绿竹完成签到,获得积分10
6秒前
江应怜完成签到 ,获得积分10
7秒前
Freedom完成签到,获得积分10
8秒前
wrjww完成签到,获得积分10
8秒前
Nowind完成签到,获得积分10
8秒前
kunny完成签到 ,获得积分10
9秒前
9秒前
慕青应助Suc采纳,获得10
10秒前
11秒前
独特冬天完成签到,获得积分10
11秒前
高院士完成签到,获得积分10
12秒前
12秒前
李爱国应助ssy采纳,获得10
13秒前
豆豆发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
YANG完成签到 ,获得积分0
17秒前
jingjing发布了新的文献求助60
18秒前
an完成签到,获得积分10
19秒前
领导范儿应助Zhong采纳,获得10
19秒前
20秒前
20秒前
刘一博发布了新的文献求助10
22秒前
rsdggsrser完成签到 ,获得积分10
22秒前
LaInh发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838