3D Vessel Segmentation With Limited Guidance of 2D Structure-Agnostic Vessel Annotations

体素 分割 计算机科学 判别式 人工智能 注释 树(集合论) 模式识别(心理学) 一致性(知识库) 计算机视觉 数学 数学分析
作者
Huai Chen,Xiuying Wang,Hui Li,Lisheng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5410-5421 被引量:1
标识
DOI:10.1109/jbhi.2024.3409382
摘要

Delineating 3D blood vessels of various anatomical structures is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Although recent supervised deep learning models have demonstrated their superior capacity in automatic 3D vessel segmentation, the reliance on expensive 3D manual annotations and limited capacity for annotation reuse among different vascular structures hinder their clinical applications. To avoid the repetitive and costly annotating process for each vascular structure and make full use of existing annotations, this paper proposes a novel 3D shape-guided local discrimination (3D-SLD) model for 3D vascular segmentation under limited guidance from public 2D vessel annotations. The primary hypothesis is that 3D vessels are composed of semantically similar voxels and often exhibit tree-shaped morphology. Accordingly, the 3D region discrimination loss is firstly proposed to learn the discriminative representation measuring voxel-wise similarities and cluster semantically consistent voxels to form the candidate 3D vascular segmentation in unlabeled images. Secondly, the shape distribution from existing 2D structure-agnostic vessel annotations is introduced to guide the 3D vessels with the tree-shaped morphology by the adversarial shape constraint loss. Thirdly, to enhance training stability and prediction credibility, the highlighting-reviewing-summarizing (HRS) mechanism is proposed. This mechanism involves summarizing historical models to maintain temporal consistency and identifying credible pseudo labels as reliable supervision signals. Only guided by public 2D coronary artery annotations, our method achieves results comparable to SOTA barely-supervised methods in 3D cerebrovascular segmentation, and the best DSC in 3D hepatic vessel segmentation, demonstrating the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赵润泽完成签到 ,获得积分10
3秒前
czy完成签到,获得积分10
3秒前
上官若男应助深情的雁露采纳,获得10
4秒前
哈喽发布了新的文献求助10
6秒前
俊逸小海豚关注了科研通微信公众号
6秒前
苏叶发布了新的文献求助10
7秒前
liuchuck发布了新的文献求助30
9秒前
lm发布了新的文献求助10
11秒前
11秒前
华仔应助无心的平蝶采纳,获得30
14秒前
破晓之照完成签到,获得积分10
14秒前
15秒前
15秒前
meme完成签到,获得积分10
17秒前
20秒前
20秒前
21秒前
聪慧芷巧应助Amanda采纳,获得10
21秒前
23秒前
蒲云海发布了新的文献求助10
24秒前
坤坤完成签到,获得积分10
25秒前
JamesPei应助lm采纳,获得10
25秒前
打打应助massonia采纳,获得10
27秒前
28秒前
28秒前
30秒前
淡淡的丹彤完成签到 ,获得积分10
30秒前
czh12232319完成签到,获得积分10
30秒前
苏叶完成签到,获得积分10
32秒前
hui发布了新的文献求助10
32秒前
33秒前
Orange应助逃亡的小狗采纳,获得10
34秒前
程勋航完成签到,获得积分10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
核桃应助哈喽采纳,获得10
36秒前
小蘑菇应助哈喽采纳,获得10
36秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003