3D Vessel Segmentation With Limited Guidance of 2D Structure-Agnostic Vessel Annotations

体素 分割 计算机科学 判别式 人工智能 注释 树(集合论) 模式识别(心理学) 一致性(知识库) 计算机视觉 数学 数学分析
作者
Huai Chen,Xiuying Wang,Hui Li,Lisheng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5410-5421 被引量:1
标识
DOI:10.1109/jbhi.2024.3409382
摘要

Delineating 3D blood vessels of various anatomical structures is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Although recent supervised deep learning models have demonstrated their superior capacity in automatic 3D vessel segmentation, the reliance on expensive 3D manual annotations and limited capacity for annotation reuse among different vascular structures hinder their clinical applications. To avoid the repetitive and costly annotating process for each vascular structure and make full use of existing annotations, this paper proposes a novel 3D shape-guided local discrimination (3D-SLD) model for 3D vascular segmentation under limited guidance from public 2D vessel annotations. The primary hypothesis is that 3D vessels are composed of semantically similar voxels and often exhibit tree-shaped morphology. Accordingly, the 3D region discrimination loss is firstly proposed to learn the discriminative representation measuring voxel-wise similarities and cluster semantically consistent voxels to form the candidate 3D vascular segmentation in unlabeled images. Secondly, the shape distribution from existing 2D structure-agnostic vessel annotations is introduced to guide the 3D vessels with the tree-shaped morphology by the adversarial shape constraint loss. Thirdly, to enhance training stability and prediction credibility, the highlighting-reviewing-summarizing (HRS) mechanism is proposed. This mechanism involves summarizing historical models to maintain temporal consistency and identifying credible pseudo labels as reliable supervision signals. Only guided by public 2D coronary artery annotations, our method achieves results comparable to SOTA barely-supervised methods in 3D cerebrovascular segmentation, and the best DSC in 3D hepatic vessel segmentation, demonstrating the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夕完成签到,获得积分10
1秒前
霜序初四完成签到 ,获得积分10
1秒前
hotongue完成签到,获得积分10
1秒前
圈圈黄完成签到,获得积分10
1秒前
田様应助lingkai采纳,获得10
1秒前
沐宇完成签到,获得积分10
2秒前
汕头凯奇完成签到,获得积分10
2秒前
兴猡应助aaaa采纳,获得10
3秒前
4秒前
李健的小迷弟应助1112采纳,获得10
4秒前
jiahao发布了新的文献求助10
4秒前
道友等等我完成签到,获得积分0
6秒前
星辰大海应助临妤采纳,获得10
6秒前
米九完成签到,获得积分10
7秒前
lin完成签到,获得积分10
8秒前
2233完成签到,获得积分10
8秒前
枳花完成签到 ,获得积分10
8秒前
若E18完成签到,获得积分10
8秒前
Amy完成签到,获得积分10
9秒前
海4015应助wqwq69采纳,获得10
9秒前
phoebe_uu发布了新的文献求助10
10秒前
ygr完成签到,获得积分0
11秒前
浅是宝贝完成签到,获得积分10
11秒前
shadow完成签到,获得积分10
12秒前
香蕉觅云应助戴先森采纳,获得10
12秒前
dh完成签到,获得积分10
12秒前
plumcute完成签到,获得积分10
12秒前
agent完成签到 ,获得积分10
12秒前
隐形曼青应助boom采纳,获得10
13秒前
药学小马完成签到,获得积分10
13秒前
13秒前
123完成签到,获得积分20
14秒前
敏感元正完成签到,获得积分10
15秒前
Cc完成签到,获得积分10
15秒前
Mrchen完成签到,获得积分10
15秒前
16秒前
飞飞完成签到,获得积分10
17秒前
luffy189完成签到 ,获得积分10
18秒前
娜娜完成签到,获得积分10
18秒前
jiahao完成签到,获得积分10
18秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169