Exploring Physical Aging in PIM-1 Using Molecular Dynamics

分子动力学 动力学(音乐) 化学 材料科学 化学物理 物理 计算化学 声学
作者
Marcel Balçık,Wojciech Ogieglo,Yingge Wang,Ingo Pinnau
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:706: 122918-122918 被引量:2
标识
DOI:10.1016/j.memsci.2024.122918
摘要

This comprehensive study explored the aging process of PIM-1, a ladder polymer of intrinsic microporosity (PIMs), by applying molecular dynamics simulations for the first time. Through detailed analysis, our work illustrates the evolution of the polymer structure from a loosely packed, less dense state of the pristine polymer to a more tightly packed configuration due to physical aging. For this purpose, a novel Molecular Dynamics (MD) methodology was employed in the process toward equilibration of PIM-1. This structural transition was quantitatively captured by measuring key parameters such as density, fractional free volume (FFV), cohesive energy density (CED), d-spacing, surface area, and gas permeabilities. The simulations demonstrate a noticeable increase in density by approximately 7% in aged PIM-1 compared to a fresh sample. This increase in density is accompanied by a corresponding decrease in FFV, suggesting a more compact molecular arrangement. The impact of these structural changes is evident in the gas transport properties. Permeabilities of all gases tested, He, H2, O2, N2, CO2 and CH4, decreased by 33% to 80%. Moreover, the selectivity of gas pairs like CO2/CH4 and O2/N2 exhibited increasing trends due to aging, as previously reported in experimental work. Structural analysis performed on the fresh and aged structures indicated collapse of free volume over aging, by disappearance of pores larger than ∼6.5 Å. Furthermore, no intrachain rearrangement was observed during physical aging in the ladder PIM-1 structure; rather, the aging resulted in increased interchain packing efficiency. Our methodology can be employed to other PIM architectures, such as polyimides of intrinsic microporosity (PIM-PIs) as well as low-free volume glassy polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的梦岚应助开放雁丝采纳,获得20
刚刚
淇淇怪怪发布了新的文献求助10
1秒前
深情安青应助呼叫554采纳,获得30
1秒前
zhuiyu完成签到,获得积分10
1秒前
鲜艳的手链完成签到,获得积分10
1秒前
知性的以筠完成签到,获得积分10
2秒前
leiyang49完成签到,获得积分10
2秒前
2秒前
李小伟完成签到,获得积分10
3秒前
3秒前
铁匠发布了新的文献求助10
4秒前
Jupiter完成签到,获得积分10
4秒前
zsqqqqq完成签到,获得积分10
6秒前
MADKAI发布了新的文献求助10
6秒前
二二二发布了新的文献求助10
6秒前
完美世界应助nihil采纳,获得10
7秒前
7秒前
cd发布了新的文献求助10
7秒前
过时的丹秋完成签到 ,获得积分10
8秒前
8秒前
成就缘分完成签到,获得积分10
8秒前
勤恳的问儿给勤恳的问儿的求助进行了留言
8秒前
一米阳光完成签到,获得积分10
9秒前
深情安青应助April采纳,获得10
9秒前
9秒前
9秒前
淇淇怪怪完成签到,获得积分10
10秒前
11秒前
小蘑菇应助二二二采纳,获得10
11秒前
11秒前
最牛的菠萝隐士完成签到,获得积分10
11秒前
zhang完成签到 ,获得积分10
12秒前
灵犀完成签到,获得积分10
12秒前
ttssooe发布了新的文献求助10
12秒前
CipherSage应助Ll采纳,获得10
13秒前
13秒前
千里发布了新的文献求助10
13秒前
Mia发布了新的文献求助20
14秒前
女神金发布了新的文献求助60
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672