Exploring physical aging in PIM-1 using molecular dynamics

分子动力学 动力学(音乐) 化学 材料科学 化学物理 物理 计算化学 声学
作者
Marcel Balçık,Wojciech Ogieglo,Yingge Wang,Ingo Pinnau
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:706: 122918-122918 被引量:7
标识
DOI:10.1016/j.memsci.2024.122918
摘要

This comprehensive study explored the aging process of PIM-1, a ladder polymer of intrinsic microporosity (PIMs), by applying molecular dynamics simulations for the first time. Through detailed analysis, our work illustrates the evolution of the polymer structure from a loosely packed, less dense state of the pristine polymer to a more tightly packed configuration due to physical aging. For this purpose, a novel Molecular Dynamics (MD) methodology was employed in the process toward equilibration of PIM-1. This structural transition was quantitatively captured by measuring key parameters such as density, fractional free volume (FFV), cohesive energy density (CED), d-spacing, surface area, and gas permeabilities. The simulations demonstrate a noticeable increase in density by approximately 7% in aged PIM-1 compared to a fresh sample. This increase in density is accompanied by a corresponding decrease in FFV, suggesting a more compact molecular arrangement. The impact of these structural changes is evident in the gas transport properties. Permeabilities of all gases tested, He, H2, O2, N2, CO2 and CH4, decreased by 33% to 80%. Moreover, the selectivity of gas pairs like CO2/CH4 and O2/N2 exhibited increasing trends due to aging, as previously reported in experimental work. Structural analysis performed on the fresh and aged structures indicated collapse of free volume over aging, by disappearance of pores larger than ∼6.5 Å. Furthermore, no intrachain rearrangement was observed during physical aging in the ladder PIM-1 structure; rather, the aging resulted in increased interchain packing efficiency. Our methodology can be employed to other PIM architectures, such as polyimides of intrinsic microporosity (PIM-PIs) as well as low-free volume glassy polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Twonej应助威武的夜绿采纳,获得20
刚刚
李爱国应助雪山飞龙采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
白潇潇发布了新的文献求助10
1秒前
彩虹小马发布了新的文献求助20
2秒前
紫藤完成签到,获得积分10
2秒前
2秒前
我不吃辣条完成签到,获得积分20
3秒前
penglinhua发布了新的文献求助10
3秒前
花卷发布了新的文献求助10
3秒前
4秒前
4秒前
apple红了完成签到 ,获得积分10
5秒前
CipherSage应助坦率曼寒采纳,获得10
6秒前
wanci应助丽优采纳,获得10
7秒前
8秒前
9秒前
9秒前
CHEN完成签到 ,获得积分10
10秒前
ChatGPT发布了新的文献求助10
10秒前
长风完成签到 ,获得积分10
11秒前
淡然善斓发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
今后应助潇洒的冰淇淋采纳,获得10
12秒前
脑洞疼应助penglinhua采纳,获得10
13秒前
15秒前
Jasper应助WYN采纳,获得10
15秒前
bluesiryao发布了新的文献求助10
15秒前
MAX33发布了新的文献求助10
15秒前
丽优完成签到,获得积分10
15秒前
15秒前
16秒前
钱钱完成签到,获得积分10
16秒前
科研通AI6应助www采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
yunyueqixun完成签到,获得积分10
18秒前
江J发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499