Optimization of Variational Mode Decomposition-Convolutional Neural Network-Bidirectional Long Short Term Memory Rolling Bearing Fault Diagnosis Model Based on Improved Dung Beetle Optimizer Algorithm

希尔伯特-黄变换 方位(导航) 算法 断层(地质) 卷积神经网络 计算机科学 超参数 人工神经网络 振动 人工智能 白噪声 物理 量子力学 地震学 地质学 电信
作者
Weiqing Sun,Yue Wang,Xingyi You,Di Zhang,Jingyi Zhang,Xiaohu Zhao
出处
期刊:Lubricants [MDPI AG]
卷期号:12 (7): 239-239
标识
DOI:10.3390/lubricants12070239
摘要

(1) Background: Rolling bearings are important components in mechanical equipment, but they are also components with a high failure rate. Once a malfunction occurs, it will cause mechanical equipment to malfunction and may even affect personnel safety. Therefore, studying the fault diagnosis methods for rolling bearings is of great significance and is also a current research hotspot and frontier. However, the vibration signals of rolling bearings usually exhibit nonlinear and non-stationary characteristics, and are easily affected by industrial environmental noise, making it difficult to accurately diagnose bearing faults. (2) Methods: Therefore, this article proposes a rolling bearing fault diagnosis model based on an improved dung beetle optimizer (DBO) algorithm-optimized variational mode decomposition-convolutional neural network-bidirectional long short-term memory (VMD-CNN-BiLSTM). Firstly, an improved DBO algorithm named CSADBO is proposed by integrating multiple strategies such as chaotic mapping and cooperative search. Secondly, the optimal parameter combination of VMD was adaptively determined through the CSADBO algorithm, and the optimized VMD algorithm was used to perform modal decomposition on the bearing vibration signal. Then, CNN-BiLSTM was used as the model for fault classification, and hyperparameters of the model were optimized using the CSADBO algorithm. (3) Results: Finally, multiple experiments were conducted on the bearing dataset of Case Western Reserve University, and the proposed method achieved an average diagnostic accuracy of 99.6%. (4) Conclusions: Experimental comparisons were made with other models to verify the effectiveness of the proposed model. The experimental results show that the proposed model based on an improved DBO algorithm optimized VMD-CNN-BiLSTM can effectively be used for rolling bearing fault diagnosis, with high diagnostic accuracy, and can provide a theoretical reference for other related fault diagnosis problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
橙子完成签到,获得积分10
2秒前
adam完成签到,获得积分10
2秒前
3秒前
3秒前
少少少发布了新的文献求助30
3秒前
YKH完成签到,获得积分10
3秒前
niulugai应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
4秒前
6秒前
7秒前
7秒前
9秒前
明帅完成签到,获得积分10
9秒前
小知了完成签到,获得积分10
10秒前
10秒前
11秒前
打打应助momo采纳,获得30
12秒前
12秒前
diyi完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
所所应助冯惮采纳,获得10
13秒前
13秒前
仙林AK47发布了新的文献求助20
14秒前
momo完成签到,获得积分10
15秒前
gemo发布了新的文献求助10
15秒前
feeuoo完成签到,获得积分10
15秒前
17秒前
嗯哼大王发布了新的文献求助10
17秒前
樱偶猫发布了新的文献求助10
18秒前
羊沛蓝完成签到,获得积分10
18秒前
lhy完成签到,获得积分10
19秒前
feeuoo发布了新的文献求助10
19秒前
cocolu应助carol采纳,获得10
19秒前
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441549
求助须知:如何正确求助?哪些是违规求助? 3038186
关于积分的说明 8970883
捐赠科研通 2726453
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688239