已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ultra‐High Peak Power Generation for Rotational Triboelectric Nanogenerator via Simple Charge Control and Boosted Discharge Design

摩擦电效应 纳米发生器 材料科学 多物理 电压 功率(物理) 发电 功率密度 光电子学 电气工程 工程类 物理 量子力学 结构工程 有限元法 复合材料
作者
Deokjae Heo,Jin-Ho Son,Jiwoong Hur,Hyungseok Yong,Kyunghwan Cha,Patrick T.J. Hwang,Bonwook Koo,Yunki Gwak,Youngho Jin,Dongseob Kim,Jinkee Hong,Sangmin Lee
出处
期刊:Advanced Functional Materials [Wiley]
被引量:4
标识
DOI:10.1002/adfm.202406032
摘要

Abstract Currently, enhancing the output power of rotational‐mode triboelectric nanogenerators (TENGs) using various complicated systems is a contentious issue; however, this is a challenging process owing to the inherent characteristics of TENGs, namely, low output currents as opposed to high voltages. Thus, this study proposes a simple and innovative strategy for ultra‐high output peak power generation of TENGs called a self‐boosted rotational electrostatic‐discharge TENG (SRE‐TENG). The SRE‐TENG mechanism is unique as it is based on charge control and boosted discharge design, thereby achieving a remarkable peak power of 1103.8 W, peak power density of 140.6 Kw m −2 , low optimum resistance of 100 Ω, and broad peak power generation range of 10 Ω to 1 GΩ. Diligent measurements and analyses of the peak and root‐mean‐square voltage and current outputs of the SRE‐TENG are conducted for various design variables and circuit configurations. The proposed SRE‐TENG mechanism is validated using experimental and multiphysics simulation results. The high‐output performance of the SRE‐TENG is demonstrated via the lighting of 3,000 LEDs and a 60‐W lamp array, continuous driving of a commercial sensor array, and hydrogen/oxygen generation via water electrolysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张凌完成签到,获得积分10
刚刚
简单寻冬完成签到,获得积分10
刚刚
刚刚
刚刚
wanci应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
xu应助科研通管家采纳,获得30
1秒前
yyds应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
4秒前
4秒前
灰灰发布了新的文献求助10
4秒前
科研通AI2S应助落后的蚂蚁采纳,获得10
5秒前
6秒前
简单寻冬发布了新的文献求助10
7秒前
坦率的尔冬完成签到,获得积分10
9秒前
pikachu完成签到,获得积分10
9秒前
ufofly730完成签到 ,获得积分10
10秒前
10秒前
ssu90完成签到 ,获得积分10
11秒前
承上启下发布了新的文献求助10
11秒前
刘浩完成签到,获得积分20
11秒前
勤奋苑睐完成签到,获得积分10
11秒前
果粒橙子完成签到 ,获得积分10
12秒前
我是老大应助坦率的尔冬采纳,获得10
13秒前
归尘发布了新的文献求助30
15秒前
15秒前
Evan完成签到,获得积分10
17秒前
yuan发布了新的文献求助10
17秒前
18秒前
稳重的白筠完成签到 ,获得积分10
18秒前
chen完成签到,获得积分10
19秒前
大喵发布了新的文献求助10
19秒前
承上启下完成签到,获得积分10
19秒前
甜甜的以筠完成签到 ,获得积分10
20秒前
传奇3应助简单寻冬采纳,获得10
21秒前
21秒前
顺顺顺应助孤独的小玉采纳,获得10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639380
求助须知:如何正确求助?哪些是违规求助? 4747904
关于积分的说明 15006208
捐赠科研通 4797525
什么是DOI,文献DOI怎么找? 2563511
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482245