概化理论
数字化病理学
开源
计算机科学
噪音(视频)
机器学习
人工智能
产量(工程)
数据挖掘
图像(数学)
统计
数学
材料科学
软件
冶金
程序设计语言
作者
Fu‐Ren F. Fan,Geovanni Martínez,Thomas DeSilvio,John H. Shin,Yijiang Chen,J. Pieter Jacobs,Bangchen Wang,Takaya Ozeki,Maxime W. Lafarge,Viktor H. Koelzer,Laura Barisoni,Anant Madabhushi,Satish E. Viswanath,Andrew Janowczyk
标识
DOI:10.1038/s44303-024-00018-2
摘要
Abstract Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability. Here we release CohortFinder ( http://cohortfinder.com ), an open-source tool aimed at mitigating BEs via data-driven cohort partitioning. We demonstrate CohortFinder improves ML model performance in downstream digital pathology and medical image processing tasks. CohortFinder is freely available for download at cohortfinder.com.
科研通智能强力驱动
Strongly Powered by AbleSci AI