Mask deep check to pre-detect defects in curvilinear mask

曲线坐标 计算机科学 人工智能 计算机视觉 计算机图形学(图像) 数学 几何学
作者
Soo‐Yong Lee,Jeeyong Lee,Sinjeung Park,Byungjun Kang,Juyun Park,Bongkeun Kim,Joonsung Kim,Seung-Hune Yang,Seongtae Jeong
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:23 (02)
标识
DOI:10.1117/1.jmm.23.2.021303
摘要

In recent years, curvilinear mask technology has emerged as a next-generation resolution enhancement method for photomasks, providing optimal margins by maximizing the degree of freedom in pattern design. However, this technology presents challenges in defining the layout design rule limits based solely on geometric information, such as width, space, and corner-to-corner. With the introduction of multi-beam mask writers for curvilinear pattern production, a distinct set of defects that are difficult to pre-detect by conventional mask rule check have occurred, as these cannot be explained by geometry terms alone. In this study, we propose a deep learning-based mask check method, named mask deep check (MDC) for pre-detect defects in inspection. The proposed vector graphics transformer (VGT) uses the state-of-the-art transformer architecture, drawing an analogy between the vertices of curvilinear patterns and words in natural language. We demonstrate improved performance of VGT-based MDC compared to a traditional rule-based approach and a convolutional neural network-based MDC method. Importantly, VGT exhibits robustness in recall, ensuring that defective patterns are not misclassified as normal, thereby preventing missed defects. Moreover, by employing attention maps to visualize VGT results, we gain explainability and reveal that mask defects may arise from issues related to the fabrication of specific designs, rather than being solely attributable to geometric features. VGT-based MDC contributes to a better understanding of the challenges associated with curvilinear mask technology and offers an effective solution for detecting mask defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh应助科研通管家采纳,获得10
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
也无风雨也无晴完成签到,获得积分10
刚刚
共享精神应助路哈哈采纳,获得10
刚刚
星辰大海应助恬昱采纳,获得10
刚刚
cherry发布了新的文献求助10
刚刚
666发布了新的文献求助10
刚刚
粗心的忆山完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
深情安青应助肖雪依采纳,获得10
1秒前
邵振启发布了新的文献求助10
2秒前
lu2025发布了新的文献求助10
2秒前
感动城完成签到,获得积分10
2秒前
朴素的雪瑶完成签到,获得积分10
2秒前
幸福的蓝血完成签到,获得积分10
3秒前
LFB完成签到,获得积分10
3秒前
xinghe123完成签到,获得积分10
3秒前
mm应助帅气善斓采纳,获得10
4秒前
香蕉觅云应助甜甜圈采纳,获得10
4秒前
帅帅哈完成签到,获得积分10
5秒前
小蘑菇应助关畅澎采纳,获得10
5秒前
5秒前
5秒前
火星上的绿蕊完成签到,获得积分10
5秒前
噜噜噜完成签到 ,获得积分10
6秒前
6秒前
amy完成签到,获得积分10
6秒前
纵马长歌完成签到,获得积分10
6秒前
852应助无限安荷采纳,获得10
6秒前
科研辣椒完成签到,获得积分10
7秒前
董春伟完成签到,获得积分10
8秒前
frank完成签到,获得积分10
8秒前
phj完成签到,获得积分10
9秒前
MAVS完成签到,获得积分10
9秒前
9秒前
爪爪完成签到,获得积分10
9秒前
一词压两宋完成签到,获得积分10
10秒前
聪明新筠完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961