Mask deep check to pre-detect defects in curvilinear mask

曲线坐标 计算机科学 人工智能 计算机视觉 计算机图形学(图像) 数学 几何学
作者
Soo‐Yong Lee,Jeeyong Lee,Sinjeung Park,Byungjun Kang,Juyun Park,Bongkeun Kim,Joonsung Kim,Seung-Hune Yang,Seongtae Jeong
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:23 (02)
标识
DOI:10.1117/1.jmm.23.2.021303
摘要

In recent years, curvilinear mask technology has emerged as a next-generation resolution enhancement method for photomasks, providing optimal margins by maximizing the degree of freedom in pattern design. However, this technology presents challenges in defining the layout design rule limits based solely on geometric information, such as width, space, and corner-to-corner. With the introduction of multi-beam mask writers for curvilinear pattern production, a distinct set of defects that are difficult to pre-detect by conventional mask rule check have occurred, as these cannot be explained by geometry terms alone. In this study, we propose a deep learning-based mask check method, named mask deep check (MDC) for pre-detect defects in inspection. The proposed vector graphics transformer (VGT) uses the state-of-the-art transformer architecture, drawing an analogy between the vertices of curvilinear patterns and words in natural language. We demonstrate improved performance of VGT-based MDC compared to a traditional rule-based approach and a convolutional neural network-based MDC method. Importantly, VGT exhibits robustness in recall, ensuring that defective patterns are not misclassified as normal, thereby preventing missed defects. Moreover, by employing attention maps to visualize VGT results, we gain explainability and reveal that mask defects may arise from issues related to the fabrication of specific designs, rather than being solely attributable to geometric features. VGT-based MDC contributes to a better understanding of the challenges associated with curvilinear mask technology and offers an effective solution for detecting mask defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
6秒前
那等不到的思恋完成签到 ,获得积分10
6秒前
6秒前
酷酷的涵蕾完成签到 ,获得积分10
8秒前
隐形白开水完成签到,获得积分0
9秒前
王正浩完成签到 ,获得积分10
13秒前
朝暮完成签到 ,获得积分10
16秒前
辛勤安梦完成签到,获得积分10
18秒前
姜菲菲完成签到,获得积分10
18秒前
fd163c完成签到,获得积分10
19秒前
温如军完成签到 ,获得积分10
23秒前
小张完成签到 ,获得积分10
23秒前
liuguohua126完成签到,获得积分10
26秒前
28秒前
杨涵完成签到 ,获得积分10
29秒前
32秒前
32秒前
37秒前
可爱的函函应助舒适松鼠采纳,获得10
38秒前
小梁完成签到,获得积分10
40秒前
Jyy77完成签到 ,获得积分10
43秒前
46秒前
48秒前
crystaler完成签到 ,获得积分10
49秒前
51秒前
浪子完成签到,获得积分10
52秒前
pengyh8完成签到 ,获得积分10
53秒前
青黛完成签到 ,获得积分10
56秒前
ryq327完成签到 ,获得积分10
58秒前
LL完成签到,获得积分10
59秒前
不倦应助科研通管家采纳,获得10
59秒前
正己化人应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
不倦应助科研通管家采纳,获得10
1分钟前
xxquinuan应助科研通管家采纳,获得10
1分钟前
怡心亭完成签到 ,获得积分10
1分钟前
xiaochaoge应助科研通管家采纳,获得10
1分钟前
arniu2008应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498637
求助须知:如何正确求助?哪些是违规求助? 4595826
关于积分的说明 14449838
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561