SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation

转录组 基因调控网络 计算生物学 比例(比率) 计算机科学 基因 人工智能 基因表达 生物 遗传学 量子力学 物理
作者
Hongyang Jiang,Yuezhu Wang,Chaoyi Yin,Hao Pan,Liqun Chen,Ke Feng,Yi Chang,Huiyan Sun
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108690-108690
标识
DOI:10.1016/j.compbiomed.2024.108690
摘要

Prevalent Gene Regulatory Network (GRN) construction methods rely on generalized correlation analysis. However, in biological systems, regulation is essentially a causal relationship that cannot be adequately captured solely through correlation. Therefore, it is more reasonable to infer GRNs from a causal perspective. Existing causal discovery algorithms typically rely on Directed Acyclic Graphs (DAGs) to model causal relationships, but it often requires traversing the entire network, which result in computational demands skyrocketing as the number of nodes grows and make causal discovery algorithms only suitable for small networks with one or two hundred nodes or fewer. In this study, we propose the SLIVER (cauSaL dIscovery Via dimEnsionality Reduction) algorithm which integrates causal structural equation model and graph decomposition. SLIVER introduces a set of factor nodes, serving as abstractions of different functional modules to integrate the regulatory relationships between genes based on their respective functions or pathways, thus reducing the GRN to the product of two low-dimensional matrices. Subsequently, we employ the structural causal model (SCM) to learn the GRN within the gene node space, enforce the DAG constraint in the low-dimensional space, and guide each factor to aggregate various functions through cosine similarity. We evaluate the performance of the SLIVER algorithm on 12 real single cell transcriptomic datasets, and demonstrate it outperforms other 12 widely used methods both in GRN inference performance and computational resource usage. The analysis of the gene information integrated by factor nodes also demonstrate the biological explanation of factor nodes in GRNs. We apply it to scRNA-seq of Type 2 diabetes mellitus to capture the transcriptional regulatory structural changes of β cells under high insulin demand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一昂杨发布了新的文献求助10
2秒前
诚心紫伊发布了新的文献求助10
2秒前
Soir完成签到 ,获得积分10
3秒前
Buduan发布了新的文献求助10
5秒前
慕青应助土豆地瓜采纳,获得10
6秒前
6秒前
小恐龙完成签到,获得积分10
6秒前
科研通AI5应助初空月儿采纳,获得10
9秒前
mkljl完成签到 ,获得积分10
9秒前
韦一宁发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI5应助yang采纳,获得10
18秒前
19秒前
20秒前
浅斟低唱发布了新的文献求助10
21秒前
吟月归客发布了新的文献求助10
22秒前
奇奇淼完成签到 ,获得积分20
23秒前
24秒前
畅快的念烟完成签到,获得积分10
24秒前
FashionBoy应助shYnEss采纳,获得10
24秒前
25秒前
科研小风发布了新的文献求助10
26秒前
hjh发布了新的文献求助10
26秒前
cc完成签到,获得积分10
27秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
zyfqpc应助科研通管家采纳,获得10
29秒前
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
nozero应助科研通管家采纳,获得30
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
zyfqpc应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
nozero应助科研通管家采纳,获得30
30秒前
实验好难应助科研通管家采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673100
求助须知:如何正确求助?哪些是违规求助? 3229040
关于积分的说明 9783423
捐赠科研通 2939397
什么是DOI,文献DOI怎么找? 1611057
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736250