亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation

转录组 基因调控网络 计算生物学 比例(比率) 计算机科学 基因 人工智能 基因表达 生物 遗传学 量子力学 物理
作者
Hongyang Jiang,Yuezhu Wang,Chaoyi Yin,Hao Pan,Liqun Chen,Ke Feng,Yi Chang,Huiyan Sun
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108690-108690 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108690
摘要

Prevalent Gene Regulatory Network (GRN) construction methods rely on generalized correlation analysis. However, in biological systems, regulation is essentially a causal relationship that cannot be adequately captured solely through correlation. Therefore, it is more reasonable to infer GRNs from a causal perspective. Existing causal discovery algorithms typically rely on Directed Acyclic Graphs (DAGs) to model causal relationships, but it often requires traversing the entire network, which result in computational demands skyrocketing as the number of nodes grows and make causal discovery algorithms only suitable for small networks with one or two hundred nodes or fewer. In this study, we propose the SLIVER (cauSaL dIscovery Via dimEnsionality Reduction) algorithm which integrates causal structural equation model and graph decomposition. SLIVER introduces a set of factor nodes, serving as abstractions of different functional modules to integrate the regulatory relationships between genes based on their respective functions or pathways, thus reducing the GRN to the product of two low-dimensional matrices. Subsequently, we employ the structural causal model (SCM) to learn the GRN within the gene node space, enforce the DAG constraint in the low-dimensional space, and guide each factor to aggregate various functions through cosine similarity. We evaluate the performance of the SLIVER algorithm on 12 real single cell transcriptomic datasets, and demonstrate it outperforms other 12 widely used methods both in GRN inference performance and computational resource usage. The analysis of the gene information integrated by factor nodes also demonstrate the biological explanation of factor nodes in GRNs. We apply it to scRNA-seq of Type 2 diabetes mellitus to capture the transcriptional regulatory structural changes of β cells under high insulin demand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NinG发布了新的文献求助10
9秒前
15秒前
fengfenghao完成签到,获得积分10
24秒前
小广完成签到,获得积分10
39秒前
稚久完成签到,获得积分10
47秒前
Orange应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
57秒前
57秒前
VERITAS完成签到,获得积分10
1分钟前
陈艺平完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
今后应助执着南琴采纳,获得10
1分钟前
稚久发布了新的文献求助10
1分钟前
风趣煎蛋发布了新的文献求助10
1分钟前
1分钟前
高木同学完成签到,获得积分10
1分钟前
执着南琴完成签到,获得积分20
1分钟前
啵啵哦关注了科研通微信公众号
1分钟前
执着南琴发布了新的文献求助10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
VERITAS发布了新的文献求助10
1分钟前
1分钟前
nature完成签到 ,获得积分10
2分钟前
华仔应助VERITAS采纳,获得10
2分钟前
天天好心覃完成签到 ,获得积分10
2分钟前
科目三应助xuezha采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助玄之又玄采纳,获得10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510910
关于积分的说明 11155555
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214