SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation

转录组 基因调控网络 计算生物学 比例(比率) 计算机科学 基因 人工智能 基因表达 生物 遗传学 物理 量子力学
作者
Hongyang Jiang,Yuezhu Wang,Chaoyi Yin,Hao Pan,Liqun Chen,Ke Feng,Yi Chang,Huiyan Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108690-108690
标识
DOI:10.1016/j.compbiomed.2024.108690
摘要

Prevalent Gene Regulatory Network (GRN) construction methods rely on generalized correlation analysis. However, in biological systems, regulation is essentially a causal relationship that cannot be adequately captured solely through correlation. Therefore, it is more reasonable to infer GRNs from a causal perspective. Existing causal discovery algorithms typically rely on Directed Acyclic Graphs (DAGs) to model causal relationships, but it often requires traversing the entire network, which result in computational demands skyrocketing as the number of nodes grows and make causal discovery algorithms only suitable for small networks with one or two hundred nodes or fewer. In this study, we propose the SLIVER (cauSaL dIscovery Via dimEnsionality Reduction) algorithm which integrates causal structural equation model and graph decomposition. SLIVER introduces a set of factor nodes, serving as abstractions of different functional modules to integrate the regulatory relationships between genes based on their respective functions or pathways, thus reducing the GRN to the product of two low-dimensional matrices. Subsequently, we employ the structural causal model (SCM) to learn the GRN within the gene node space, enforce the DAG constraint in the low-dimensional space, and guide each factor to aggregate various functions through cosine similarity. We evaluate the performance of the SLIVER algorithm on 12 real single cell transcriptomic datasets, and demonstrate it outperforms other 12 widely used methods both in GRN inference performance and computational resource usage. The analysis of the gene information integrated by factor nodes also demonstrate the biological explanation of factor nodes in GRNs. We apply it to scRNA-seq of Type 2 diabetes mellitus to capture the transcriptional regulatory structural changes of β cells under high insulin demand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
岸居发布了新的文献求助10
刚刚
李健应助玛琪玛小姐的狗采纳,获得10
1秒前
充电宝应助todayisirene采纳,获得10
3秒前
Lucas应助www采纳,获得10
4秒前
轻青完成签到,获得积分10
5秒前
安静的滑板应助daiyu采纳,获得10
6秒前
在水一方应助daiyu采纳,获得10
6秒前
6秒前
147发布了新的文献求助10
7秒前
ardejiang发布了新的文献求助10
8秒前
10秒前
知世郎完成签到 ,获得积分10
10秒前
14秒前
17秒前
猫咪老师应助科研通管家采纳,获得30
18秒前
情怀应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
19秒前
19秒前
Rita应助科研通管家采纳,获得10
19秒前
坦率耳机应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
daiyu完成签到,获得积分10
19秒前
hh发布了新的文献求助50
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
NagatoYuki完成签到,获得积分10
19秒前
StayGolDay完成签到,获得积分20
20秒前
顶级洋仔完成签到,获得积分10
22秒前
Lin发布了新的文献求助10
22秒前
等待彩虹发布了新的文献求助10
22秒前
样子发布了新的文献求助10
24秒前
cookie完成签到,获得积分10
24秒前
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233011
求助须知:如何正确求助?哪些是违规求助? 2879662
关于积分的说明 8212270
捐赠科研通 2547168
什么是DOI,文献DOI怎么找? 1376574
科研通“疑难数据库(出版商)”最低求助积分说明 647659
邀请新用户注册赠送积分活动 623067