POS0377 ASSOCIATION OF COMORBIDITIES, MICROBIOTA AND METABOLOMICS WITH ESTABLISHED AND DEVELOPING RHEUMATOID ARTHRITIS

类风湿性关节炎 代谢组学 联想(心理学) 医学 计算生物学 生物信息学 免疫学 生物 心理学 心理治疗师
作者
Jan Henrik Schirmer,Kristina Schlicht,Tobias Demetrowitsch,N. Rohmann,K Türk,Dominik M. Schulte,Katharina Hartmann,Ute Settgast,Andreas G. Franke,Kristin Schwarz,Stefanie Schreiber,B. F. Hoyer,Matthias Laudes
标识
DOI:10.1136/annrheumdis-2024-eular.2719
摘要

Background:

In rheumatoid arthritis (RA), dysregulation of intestinal microbiota and metabolism as well as associations with comorbidities are a subject of increasing scientific interest.

Objectives:

The aim of this study was the characterization and correlation of the "OMICS" layers microbiota and metabolome with RA, as well as with developing RA before diagnosis (preRA).

Methods:

For the analysis the FoodChain Plus (FoCus) cohort (n=1,795 participants) was used, which consists of a cross-sectional survey of the population, as well as subjects with obesity, diabetes and inflammatory diseases. Only subjects with available data for intestinal microbiota (16S rRNA gene sequencing from stool samples grouped in amplicon sequence variants), serum metabolome and nutrition data were included. For every subject with RA and every subject with preRA (no RA at biosampling but known to develop RA during follow-up), two matched controls were assigned. The serum metabolome was measured using direct injection FT-ICR mass spectrometry. The analysis was conducted using a semi-targeted approach and a customized local database (including metabolites from the "Human Metabolome Database" [1]). Identified metabolites were evaluated for the predictive value for RA and preRA by sparse partial least squares-discriminant analysis (sPLS-DA).

Results:

For every subject with RA (n=60) and every subject with preRA (n=21), two matched controls were assigned. Compared to RA, those with preRA showed a higher BMI (median 28.2 VS 33.1, p<0.05). Chronic respiratory diseases were more prevalent in preRA compared to RA and controls (p<0.001). Significant differences in beta-diversity of the core measurable microbiota (CMM) between RA and preRA, RA and controls and preRA and controls were observed using Jaccard-index (p=0.01), but not in complete microbiota by Bray-Curtis distance (p>0.05). Differences of alpha diversity were not statistically significant when comparing RA and preRA with their matched controls (p>0.05). Via sPLS-DA 50 metabolites that most accurately discriminated RA, preRA and controls were identified. After adjusting by false discovery rate n=12 candidate metabolites remained (Kruskal-Wallis, p<0.05). For 132 subjects metabolome data from urine were available, no significant metabolites remained using the same exploratory approach.

Conclusion:

Not only subjects with RA, but also those with preRA showed significant differences in gut microbiota composition, serum metabolome and comorbidities. The presented results are preliminary.

REFERENCES:

[1] Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee BL, Berjanskii M, Mah R, Yamamoto M, Jovel J, Torres-Calzada C, Hiebert-Giesbrecht M, Lui VW, Varshavi D, Varshavi D, Allen D, Arndt D, Khetarpal N, Sivakumaran A, Harford K, Sanford S, Yee K, Cao X, Budinski Z, Liigand J, Zhang L, Zheng J, Mandal R, Karu N, Dambrova M, Schiöth HB, Greiner R, Gautam V. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2022 Jan 7;50(D1):D622-D631. DOI: 10.1093/nar/gkab1062.

Acknowledgements:

NIL.

Disclosure of Interests:

Jan Schirmer: None declared, Kristina Schlicht: None declared, Tobias Demetrowitsch: None declared, Nathalie Rohmann: None declared, Kathrin Türk: None declared, Dominik Schulte: None declared, Katharina Hartmann: None declared, Ute Settgast: None declared, Andre Franke: None declared, Karin Schwarz: None declared, Stefan Schreiber Abbvie, Amgen, Arena, Biogen, BMS, Celgene, Celltrion, Falk, Ferring, Fresenius Kabi, Galapagos, Gilead, HIKMA, IMAB, Janssen, Lilly, MSD, Mylan, Novartis, Pfizer, Protagonist, Provention Bio, Roche, Sandoz/Hexal, Takeda and Theravance, Bimba Franziska Hoyer: None declared, Matthias Laudes: None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
skysleeper完成签到,获得积分10
1秒前
hailiangzheng完成签到,获得积分10
2秒前
随便取完成签到,获得积分10
2秒前
时尚俊驰发布了新的文献求助10
2秒前
勤奋的如松完成签到,获得积分0
7秒前
粥可温完成签到,获得积分10
9秒前
曾珍发布了新的文献求助10
10秒前
11秒前
hzh完成签到 ,获得积分10
12秒前
gg发布了新的文献求助10
12秒前
勤劳滑板完成签到 ,获得积分10
12秒前
Jerry完成签到,获得积分10
13秒前
MrLiu完成签到,获得积分10
14秒前
冷傲博完成签到,获得积分10
14秒前
jeff完成签到,获得积分10
14秒前
LHZ完成签到,获得积分10
14秒前
所所应助时尚俊驰采纳,获得10
15秒前
影子芳香完成签到 ,获得积分10
16秒前
17秒前
17秒前
不必要再讨论适合与否完成签到,获得积分0
18秒前
无情夏寒完成签到 ,获得积分10
19秒前
慕青应助马士全采纳,获得10
20秒前
xuzj应助科研通管家采纳,获得10
20秒前
Rubby应助科研通管家采纳,获得30
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
shiizii应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
ludong_0应助科研通管家采纳,获得10
21秒前
YeeYee发布了新的文献求助10
21秒前
冷酷的松思完成签到,获得积分10
21秒前
zgt01发布了新的文献求助10
22秒前
zhang完成签到,获得积分10
22秒前
江中完成签到 ,获得积分10
24秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022