POS0377 ASSOCIATION OF COMORBIDITIES, MICROBIOTA AND METABOLOMICS WITH ESTABLISHED AND DEVELOPING RHEUMATOID ARTHRITIS

类风湿性关节炎 代谢组学 联想(心理学) 医学 计算生物学 生物信息学 免疫学 生物 心理学 心理治疗师
作者
Jan Henrik Schirmer,Kristina Schlicht,Tobias Demetrowitsch,N. Rohmann,K Türk,Dominik M. Schulte,Katharina Hartmann,Ute Settgast,Andreas G. Franke,Kristin Schwarz,Stefanie Schreiber,B. F. Hoyer,Matthias Laudes
标识
DOI:10.1136/annrheumdis-2024-eular.2719
摘要

Background:

In rheumatoid arthritis (RA), dysregulation of intestinal microbiota and metabolism as well as associations with comorbidities are a subject of increasing scientific interest.

Objectives:

The aim of this study was the characterization and correlation of the "OMICS" layers microbiota and metabolome with RA, as well as with developing RA before diagnosis (preRA).

Methods:

For the analysis the FoodChain Plus (FoCus) cohort (n=1,795 participants) was used, which consists of a cross-sectional survey of the population, as well as subjects with obesity, diabetes and inflammatory diseases. Only subjects with available data for intestinal microbiota (16S rRNA gene sequencing from stool samples grouped in amplicon sequence variants), serum metabolome and nutrition data were included. For every subject with RA and every subject with preRA (no RA at biosampling but known to develop RA during follow-up), two matched controls were assigned. The serum metabolome was measured using direct injection FT-ICR mass spectrometry. The analysis was conducted using a semi-targeted approach and a customized local database (including metabolites from the "Human Metabolome Database" [1]). Identified metabolites were evaluated for the predictive value for RA and preRA by sparse partial least squares-discriminant analysis (sPLS-DA).

Results:

For every subject with RA (n=60) and every subject with preRA (n=21), two matched controls were assigned. Compared to RA, those with preRA showed a higher BMI (median 28.2 VS 33.1, p<0.05). Chronic respiratory diseases were more prevalent in preRA compared to RA and controls (p<0.001). Significant differences in beta-diversity of the core measurable microbiota (CMM) between RA and preRA, RA and controls and preRA and controls were observed using Jaccard-index (p=0.01), but not in complete microbiota by Bray-Curtis distance (p>0.05). Differences of alpha diversity were not statistically significant when comparing RA and preRA with their matched controls (p>0.05). Via sPLS-DA 50 metabolites that most accurately discriminated RA, preRA and controls were identified. After adjusting by false discovery rate n=12 candidate metabolites remained (Kruskal-Wallis, p<0.05). For 132 subjects metabolome data from urine were available, no significant metabolites remained using the same exploratory approach.

Conclusion:

Not only subjects with RA, but also those with preRA showed significant differences in gut microbiota composition, serum metabolome and comorbidities. The presented results are preliminary.

REFERENCES:

[1] Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee BL, Berjanskii M, Mah R, Yamamoto M, Jovel J, Torres-Calzada C, Hiebert-Giesbrecht M, Lui VW, Varshavi D, Varshavi D, Allen D, Arndt D, Khetarpal N, Sivakumaran A, Harford K, Sanford S, Yee K, Cao X, Budinski Z, Liigand J, Zhang L, Zheng J, Mandal R, Karu N, Dambrova M, Schiöth HB, Greiner R, Gautam V. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2022 Jan 7;50(D1):D622-D631. DOI: 10.1093/nar/gkab1062.

Acknowledgements:

NIL.

Disclosure of Interests:

Jan Schirmer: None declared, Kristina Schlicht: None declared, Tobias Demetrowitsch: None declared, Nathalie Rohmann: None declared, Kathrin Türk: None declared, Dominik Schulte: None declared, Katharina Hartmann: None declared, Ute Settgast: None declared, Andre Franke: None declared, Karin Schwarz: None declared, Stefan Schreiber Abbvie, Amgen, Arena, Biogen, BMS, Celgene, Celltrion, Falk, Ferring, Fresenius Kabi, Galapagos, Gilead, HIKMA, IMAB, Janssen, Lilly, MSD, Mylan, Novartis, Pfizer, Protagonist, Provention Bio, Roche, Sandoz/Hexal, Takeda and Theravance, Bimba Franziska Hoyer: None declared, Matthias Laudes: None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红红火火恍恍惚惚完成签到,获得积分10
1秒前
SciGPT应助ahai采纳,获得10
1秒前
1秒前
fff完成签到,获得积分10
2秒前
2秒前
3秒前
王小美完成签到,获得积分10
3秒前
金22完成签到,获得积分10
3秒前
黄科研完成签到,获得积分10
3秒前
huangr123发布了新的文献求助10
4秒前
爱笑的蘑菇完成签到,获得积分10
4秒前
淡定的半鬼完成签到,获得积分10
4秒前
毕个业完成签到 ,获得积分10
5秒前
5秒前
852应助蔡蔡不菜菜采纳,获得10
5秒前
周杨烊完成签到,获得积分10
5秒前
斯文以蓝发布了新的文献求助10
6秒前
Singularity应助颠儿采纳,获得10
6秒前
6秒前
刻苦黎云完成签到,获得积分10
8秒前
qutt完成签到 ,获得积分10
9秒前
ashley完成签到,获得积分10
10秒前
爱科研的龙完成签到,获得积分10
10秒前
LI完成签到,获得积分20
11秒前
joni发布了新的文献求助10
11秒前
kyrrt完成签到,获得积分10
12秒前
Ethan完成签到,获得积分10
12秒前
去看海嘛应助lmgegege采纳,获得10
12秒前
ZHQ完成签到,获得积分20
12秒前
善学以致用应助抹茶肥肠采纳,获得10
12秒前
林荫下的熊完成签到,获得积分10
12秒前
cccc完成签到,获得积分10
13秒前
无限天空完成签到,获得积分20
13秒前
calm完成签到 ,获得积分10
13秒前
13秒前
扯犊子完成签到,获得积分10
14秒前
14秒前
Lucas应助廖元枫采纳,获得10
14秒前
鸡蛋饼波比完成签到 ,获得积分10
15秒前
唐隶完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158860
求助须知:如何正确求助?哪些是违规求助? 2810040
关于积分的说明 7885599
捐赠科研通 2468890
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012