初级生产
植被(病理学)
环境科学
生态系统
自然地理学
恢复生态学
陆地生态系统
生产力
水文学(农业)
固碳
生态学
地理
地质学
医学
宏观经济学
病理
经济
生物
岩土工程
二氧化碳
作者
Jinyang Wang,Kuankuan Cui,Fei Yang,Jun Li,Chengye Zhang,Tianmeng Du,Haoran Zhang
摘要
Abstract The vegetation net primary productivity (NPP) is a key indicator for evaluating vegetation carbon sequestration. Exploring its spatiotemporal changes and impact factors is essential for coal mining and ecological restoration in open‐pit mining areas. This study utilized the Carnegie‐Ames‐Stanford‐Approach (CASA) model to calculate monthly vegetation NPP in the Xiwan mine area, a typical open‐pit mine in northwestern China. The trend, stability, and persistence analysis were conducted, along with the development of a grading method to examine the vegetation NPP spatiotemporal variation across different land cover types. Statistical grading and correlation analysis were used to explore the relationships between the topographical factors, meteorological factors, human activities, and vegetation NPP. The following results were obtained: (1) The vegetation NPP in the study area exhibited a high stability and anti‐persistent decrease in trend. NPP reached a peak of 143.49 g C/(m 2 year) in 2017, but declined to a low of 118.38 g C/(m 2 year) in 2021. (2) The vegetation NPP decreases with increasing elevation and slope, and a relatively strong correlation with temperature and precipitation was also observed. (3) The impact intensity of human activities on vegetation NPP exhibited a rising and fluctuating volatile trend. In 2021, the inhibition of vegetation NPP by human activities reached its peak at 166.42 g C/(m 2 year), with an impact effect share of 36.9%. This research provides a comprehensive framework for vegetation NPP analysis in open‐pit mining, offering valuable insights for ecological conservation in mining ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI