Learning spatiotemporal dynamics with a pretrained generative model

生成语法 动力学(音乐) 生成模型 计算机科学 人工智能 心理学 教育学
作者
Yang Lijun,Zeyu Li,Han Wang,Yue Zhang,Qingfei Fu,Jingxuan Li,Li-zi Qin,Ruo‐Yu Dong,Hao Sun,Yue Deng
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4183330/v1
摘要

Abstract Reconstructing spatiotemporal dynamics with sparse sensor measurement is an outstanding problem, commonly encountered in a wide spectrum of scientific and engineering applications. Such a problem is particularly challenging when the number and/or types of sensors (e.g., randomly placed) are extremely insufficient. Existing end-to-end learning models ordinarily suffer from the generalization issue for full-field reconstruction of spatiotemporal dynamics, especially in sparse data regimes typically seen in real-world applications. To this end, we propose a sparse-sensor-assisted score-based generative model (S3GM) to reconstruct and predict full-field spatiotemporal dynamics based on sparse measurements. Instead of learning directly the mapping between input and output pairs, an unconditioned generative model is firstly pretrained capturing the joint distribution of a vast group of pretraining data in a self-supervised manner, followed then by a sampling process conditioned on unseen sparse measurement. The efficacy of S3GM has been verified on multiple dynamical systems with various synthetic, real-world, and lab-test datasets (ranging from turbulent flow modeling to weather/climate forecasting). The results demonstrate the excellent performance of S3GM in zero-shot reconstruction and prediction of spatiotemporal dynamics even with high levels of data sparsity and noise. We find that S3GM exhibits high accuracy, generalizability, and robustness when handling different reconstruction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suoyu发布了新的文献求助10
刚刚
月潮共生完成签到 ,获得积分10
3秒前
liuxuwei发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
华仔应助JENDEUKI采纳,获得10
4秒前
rrrrwq发布了新的文献求助10
4秒前
Desamin发布了新的文献求助10
6秒前
领导范儿应助独特的尔风采纳,获得30
6秒前
得到发布了新的文献求助10
6秒前
黄小倩完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助111111采纳,获得10
7秒前
wls发布了新的文献求助10
8秒前
细心煜祺应助ddg采纳,获得10
9秒前
10秒前
无花果应助tRNA采纳,获得30
11秒前
大模型应助得到采纳,获得10
12秒前
孟2发布了新的文献求助10
12秒前
Enri完成签到,获得积分10
12秒前
rrrrwq完成签到,获得积分20
13秒前
sun2ot完成签到,获得积分10
13秒前
wisdom应助西瓜采纳,获得10
13秒前
LF-Scie发布了新的文献求助200
14秒前
ykxzxn发布了新的文献求助10
14秒前
沉默的皮卡丘完成签到 ,获得积分10
16秒前
万能图书馆应助大白采纳,获得10
16秒前
16秒前
可爱的函函应助rrrrwq采纳,获得10
16秒前
高高梦山完成签到 ,获得积分20
17秒前
田様应助东山月采纳,获得10
17秒前
19秒前
Eileen发布了新的文献求助10
19秒前
19秒前
杨咩咩完成签到 ,获得积分10
20秒前
21秒前
wuhao完成签到,获得积分20
21秒前
完美世界应助LF-Scie采纳,获得200
21秒前
张zhang应助雪花采纳,获得30
22秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167