Learning spatiotemporal dynamics with a pretrained generative model

生成语法 动力学(音乐) 生成模型 计算机科学 人工智能 心理学 教育学
作者
Lijun Yang,Zeyu Li,Han Wang,Yue Zhang,Qingfei Fu,Jingxuan Li,Lizi Qin,Ruo‐Yu Dong,Hao Sun,Yue Deng
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4183330/v1
摘要

Abstract Reconstructing spatiotemporal dynamics with sparse sensor measurement is an outstanding problem, commonly encountered in a wide spectrum of scientific and engineering applications. Such a problem is particularly challenging when the number and/or types of sensors (e.g., randomly placed) are extremely insufficient. Existing end-to-end learning models ordinarily suffer from the generalization issue for full-field reconstruction of spatiotemporal dynamics, especially in sparse data regimes typically seen in real-world applications. To this end, we propose a sparse-sensor-assisted score-based generative model (S3GM) to reconstruct and predict full-field spatiotemporal dynamics based on sparse measurements. Instead of learning directly the mapping between input and output pairs, an unconditioned generative model is firstly pretrained capturing the joint distribution of a vast group of pretraining data in a self-supervised manner, followed then by a sampling process conditioned on unseen sparse measurement. The efficacy of S3GM has been verified on multiple dynamical systems with various synthetic, real-world, and lab-test datasets (ranging from turbulent flow modeling to weather/climate forecasting). The results demonstrate the excellent performance of S3GM in zero-shot reconstruction and prediction of spatiotemporal dynamics even with high levels of data sparsity and noise. We find that S3GM exhibits high accuracy, generalizability, and robustness when handling different reconstruction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的含羞草完成签到,获得积分10
1秒前
大个应助WZ0904采纳,获得10
2秒前
Sofia发布了新的文献求助60
5秒前
6秒前
橘子姐姐发布了新的文献求助10
7秒前
yanyan完成签到,获得积分10
8秒前
TT完成签到,获得积分10
9秒前
9秒前
了然完成签到 ,获得积分10
10秒前
jxp完成签到,获得积分10
10秒前
jojo完成签到 ,获得积分10
11秒前
11秒前
勤劳落雁完成签到 ,获得积分10
11秒前
14秒前
爆米花应助科研通管家采纳,获得30
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
田様应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
RC_Wang应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
赘婿应助Quzhengkai采纳,获得10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
李爱国应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
调研昵称发布了新的文献求助10
16秒前
CodeCraft应助清新的苑博采纳,获得10
17秒前
所所应助Chen采纳,获得10
18秒前
20秒前
20秒前
goldenfleece发布了新的文献求助10
20秒前
怕黑的钥匙完成签到 ,获得积分10
20秒前
zhangsf88完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808