已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Crowd-Sourced NeRF: Collecting Data From Production Vehicles for 3D Street View Reconstruction

生产(经济) 计算机科学 运输工程 工程类 经济 宏观经济学
作者
Tong Qin,C. L. Li,Haoyang Ye,Sereana Wan,Minzhen Li,Hongwei Liu,Ming Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tits.2024.3415394
摘要

Recently, Neural Radiance Fields (NeRF) achieved impressive results in novel view synthesis.Block-NeRF showed the capability of leveraging NeRF to build large city-scale models.For large-scale modeling, a mass of image data is necessary.Collecting images from specially designed data-collection vehicles can not support large-scale applications.How to acquire massive high-quality data remains an opening problem.Noting that the automotive industry has a huge amount of image data, crowdsourcing is a convenient way for large-scale data collection.In this paper, we present a crowd-sourced framework, which utilizes substantial data captured by production vehicles to reconstruct the scene with the NeRF model.This approach solves the key problem of large-scale reconstruction, that is where the data comes from and how to use them.Firstly, the crowdsourced massive data is filtered to remove redundancy and keep a balanced distribution in terms of time and space.Then a structure-from-motion module is performed to refine camera poses.Finally, images, as well as poses, are used to train the NeRF model in a certain block.We highlight that we presents a comprehensive framework that integrates multiple modules, including data selection, sparse 3D reconstruction, sequence appearance embedding, depth supervision of ground surface, and occlusion completion.The complete system is capable of effectively processing and reconstructing high-quality 3D scenes from crowd-sourced data.Extensive quantitative and qualitative experiments were conducted to validate the performance of our system.Moreover, we proposed an application, named first-view navigation, which leveraged the NeRF model to generate 3D street view and guide the driver with a synthesized video.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Fiona完成签到 ,获得积分10
2秒前
坚定映菡发布了新的文献求助10
8秒前
8秒前
9秒前
害怕的灰狼完成签到,获得积分20
11秒前
彭于晏应助blue2021采纳,获得30
11秒前
水心发布了新的文献求助10
13秒前
14秒前
资格丘二完成签到,获得积分10
15秒前
18秒前
18秒前
坚定映菡完成签到,获得积分10
19秒前
19秒前
椋月完成签到,获得积分10
20秒前
22秒前
手术刀完成签到 ,获得积分10
23秒前
xiangxiang发布了新的文献求助10
23秒前
招水若离完成签到,获得积分10
26秒前
sa完成签到 ,获得积分10
28秒前
饭神仙鱼完成签到,获得积分10
30秒前
SolderOH完成签到,获得积分10
31秒前
31秒前
宋小七完成签到 ,获得积分10
32秒前
32秒前
34秒前
blue2021发布了新的文献求助30
35秒前
怕黑鲂完成签到 ,获得积分10
36秒前
菜鸡5号发布了新的文献求助100
36秒前
mg完成签到 ,获得积分10
37秒前
39秒前
椋月发布了新的文献求助60
41秒前
隐形曼青应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
深情安青应助科研通管家采纳,获得10
44秒前
科研通AI2S应助Emma采纳,获得10
46秒前
czq完成签到,获得积分10
47秒前
阳光的灵竹完成签到,获得积分10
52秒前
TiY完成签到 ,获得积分10
54秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344050
求助须知:如何正确求助?哪些是违规求助? 2971099
关于积分的说明 8646500
捐赠科研通 2651343
什么是DOI,文献DOI怎么找? 1451691
科研通“疑难数据库(出版商)”最低求助积分说明 672237
邀请新用户注册赠送积分活动 661785