Deep learning-Assisted Monitoring of Trastuzumab Efficacy in HER2-Overexpressing Breast Cancer via SERS Immunoassays of Tumor-Derived Urinary Exosomal Biomarkers

曲妥珠单抗 医学 乳腺癌 癌症 癌症研究 肿瘤科 内科学
作者
Jinyoung Kim,Hye Young Son,Sojeong Lee,Hyun Wook Rho,Ryunhyung Kim,Hyein Jung,Chaewon Park,Byeonggeol Mun,Yesol Moon,Eun Ji Jeong,Eun‐Kyung Lim,Seungjoo Haam
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:: 116347-116347 被引量:1
标识
DOI:10.1016/j.bios.2024.116347
摘要

Monitoring drug efficacy is significant in the current concept of companion diagnostics in metastatic breast cancer. Trastuzumab, a drug targeting human epidermal growth factor receptor 2 (HER2), is an effective treatment for metastatic breast cancer. However, some patients develop resistance to this therapy; therefore, monitoring its efficacy is essential. Here, we describe a deep learning-assisted monitoring of trastuzumab efficacy based on a surface-enhanced Raman spectroscopy (SERS) immunoassay against HER2-overexpressing mouse urinary exosomes. Individual Raman reporters bearing the desired SERS tag and exosome capture substrate were prepared for the SERS immunoassay; SERS tag signals were collected to prepare deep learning training data. Using this deep learning algorithm, various complicated mixtures of SERS tags were successfully quantified and classified. Exosomal antigen levels of five types of cell-derived exosomes were determined using SERS-deep learning analysis and compared with those obtained via quantitative reverse transcription polymerase chain reaction and western blot analysis. Finally, drug efficacy was monitored via SERS-deep learning analysis using urinary exosomes from trastuzumab-treated mice. Use of this monitoring system should allow proactive responses to any treatment-resistant issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KAI关闭了KAI文献求助
1秒前
dbzdq发布了新的文献求助10
1秒前
asd发布了新的文献求助30
1秒前
1秒前
1秒前
3秒前
jackmilton发布了新的文献求助10
4秒前
可爱的函函应助噼里啪啦采纳,获得10
5秒前
8秒前
研友_VZG7GZ应助劉平果采纳,获得40
9秒前
华仔应助嗯嗯采纳,获得10
9秒前
12秒前
12秒前
火星上的睫毛膏完成签到,获得积分10
14秒前
Rita发布了新的文献求助10
14秒前
顺心不斜完成签到,获得积分10
15秒前
LTJ完成签到,获得积分10
15秒前
Lucas应助Cuddle采纳,获得10
16秒前
0ne222关注了科研通微信公众号
17秒前
17秒前
18秒前
万能图书馆应助陈泽宇采纳,获得10
18秒前
wuhao0118发布了新的文献求助10
18秒前
19秒前
苟玉琴发布了新的文献求助10
21秒前
21秒前
烧炭匠发布了新的文献求助10
22秒前
23秒前
orixero应助甜美的惠采纳,获得10
23秒前
25秒前
斯文败类应助花道采纳,获得10
25秒前
26秒前
bill应助chenll1988采纳,获得10
26秒前
26秒前
wuhao0118完成签到,获得积分10
27秒前
asd关闭了asd文献求助
27秒前
29秒前
善学以致用应助认真烨华采纳,获得10
29秒前
汤mou完成签到,获得积分10
29秒前
香风智乃完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821