Deep learning-assisted monitoring of trastuzumab efficacy in HER2-Overexpressing breast cancer via SERS immunoassays of tumor-derived urinary exosomal biomarkers

曲妥珠单抗 外体 微泡 免疫分析 医学 乳腺癌 癌症生物标志物 癌症 癌症研究 内科学 抗体 化学 小RNA 免疫学 生物化学 基因
作者
Jinyoung Kim,Hye Young Son,Sojeong Lee,Hyun Wook Rho,Ryunhyung Kim,Hyein Jeong,Chaewon Park,Byeonggeol Mun,Yesol Moon,Eun Ji Jeong,Eun‐Kyung Lim,Seungjoo Haam
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:258: 116347-116347 被引量:10
标识
DOI:10.1016/j.bios.2024.116347
摘要

Monitoring drug efficacy is significant in the current concept of companion diagnostics in metastatic breast cancer. Trastuzumab, a drug targeting human epidermal growth factor receptor 2 (HER2), is an effective treatment for metastatic breast cancer. However, some patients develop resistance to this therapy; therefore, monitoring its efficacy is essential. Here, we describe a deep learning-assisted monitoring of trastuzumab efficacy based on a surface-enhanced Raman spectroscopy (SERS) immunoassay against HER2-overexpressing mouse urinary exosomes. Individual Raman reporters bearing the desired SERS tag and exosome capture substrate were prepared for the SERS immunoassay; SERS tag signals were collected to prepare deep learning training data. Using this deep learning algorithm, various complicated mixtures of SERS tags were successfully quantified and classified. Exosomal antigen levels of five types of cell-derived exosomes were determined using SERS-deep learning analysis and compared with those obtained via quantitative reverse transcription polymerase chain reaction and western blot analysis. Finally, drug efficacy was monitored via SERS-deep learning analysis using urinary exosomes from trastuzumab-treated mice. Use of this monitoring system should allow proactive responses to any treatment-resistant issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助qyang采纳,获得10
1秒前
1秒前
司空铭完成签到,获得积分10
1秒前
传奇3应助善良的冥茗采纳,获得10
2秒前
我是老大应助QixuGuo采纳,获得10
2秒前
zz发布了新的文献求助10
2秒前
Liuzirong发布了新的文献求助10
5秒前
默默洋葱发布了新的文献求助50
6秒前
认真柜子完成签到,获得积分20
7秒前
8秒前
Owen应助王盼盼采纳,获得10
8秒前
8秒前
lzm发布了新的文献求助10
8秒前
李多鱼完成签到,获得积分20
9秒前
10秒前
10秒前
含蓄的鲜花完成签到,获得积分10
11秒前
11秒前
科研达人发布了新的文献求助30
14秒前
qyang发布了新的文献求助10
14秒前
15秒前
Alioth发布了新的文献求助10
15秒前
16秒前
19秒前
21秒前
24秒前
耿大海完成签到,获得积分10
26秒前
28秒前
默默洋葱完成签到,获得积分10
28秒前
31秒前
茶蛋完成签到 ,获得积分10
32秒前
33秒前
科研达人发布了新的文献求助10
34秒前
Dr. LJ发布了新的文献求助10
35秒前
turbohuan完成签到,获得积分10
36秒前
36秒前
焱曦发布了新的文献求助30
38秒前
认真柜子发布了新的文献求助10
41秒前
41秒前
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629