Forecasting corporate financial performance with deep learning and interpretable ALE method: Evidence from China

中国 人工智能 计量经济学 经济 计算机科学 机器学习 政治学 法学
作者
Longyue Liang,Bo Liu,Zhi Su,Xuanye Cai
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.3138
摘要

Abstract Forecasting and analyzing corporate financial performance are of significant value to investors, managers, and regulators. In this paper, we constructed the one‐dimensional convolutional neural networks (1D‐CNN) and long short‐term memory (LSTM) deep learning models to investigate the feasibility of forecasting corporate financial performance with deep learning models, using the corporate financial features and environment, social and governance (ESG) rating index of Chinese A‐share listed corporation data from 2015 to 2021. Five evaluation metrics were employed to measure models' forecasting effects, and four competing machine learning models were built to verify the improvement in forecasting accuracy brought by the deep learning models. Furthermore, we also introduced the Accumulated Local Effects method to explore the forecasting processes of the deep learning models. The empirical results show the following: (1) Deep learning models can effectively extract the time‐series information in corporate data, thereby solving the task of predicting corporate financial performance with high accuracy. (2) The introduction of ESG information significantly contributes to the forecasting accuracy of corporate financial performance. For both 1D‐CNN and LSTM models, the ESG rating index can provide additional useful information for forecasting. (3) The interpretable results reveal the preference and emphasis of the two deep learning models for the different features. This further proves the robustness and reliability of deep learning models in forecasting corporate financial performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cckiki发布了新的文献求助20
刚刚
鹤轸完成签到,获得积分10
刚刚
wdd完成签到 ,获得积分10
刚刚
zhenya完成签到,获得积分10
1秒前
tongtongtong完成签到,获得积分10
2秒前
瓜了个瓜完成签到,获得积分10
2秒前
fafafasci完成签到,获得积分10
2秒前
隐形曼青应助suyanjin采纳,获得10
2秒前
OK佛给OK佛的求助进行了留言
2秒前
一次性过完成签到,获得积分10
3秒前
3秒前
txfxh完成签到,获得积分20
4秒前
nancyzhao完成签到 ,获得积分10
5秒前
wenhao完成签到 ,获得积分10
5秒前
sarah完成签到,获得积分10
6秒前
虚拟的半梦完成签到,获得积分10
6秒前
遇见渔火发布了新的文献求助30
7秒前
Anivia2015完成签到,获得积分10
7秒前
hao完成签到 ,获得积分10
7秒前
补作业的糖豆完成签到,获得积分10
7秒前
8秒前
李健的小迷弟应助十二采纳,获得10
8秒前
MrSong完成签到,获得积分10
9秒前
小于完成签到,获得积分10
9秒前
Tony发布了新的文献求助10
10秒前
领导范儿应助Jack80采纳,获得30
10秒前
潇湘雪月完成签到,获得积分10
10秒前
唯有一个心完成签到 ,获得积分10
10秒前
珠珠崽子完成签到 ,获得积分10
10秒前
董小李完成签到,获得积分10
11秒前
领导范儿应助慕斯采纳,获得10
11秒前
唐妮完成签到,获得积分10
11秒前
拓跋凝海完成签到,获得积分10
12秒前
罗大大完成签到 ,获得积分10
13秒前
Tough完成签到 ,获得积分10
13秒前
赘婿应助jason采纳,获得10
13秒前
Owen应助平淡扬采纳,获得10
13秒前
xzleee完成签到 ,获得积分10
13秒前
思源应助Leo000007采纳,获得10
14秒前
木木完成签到,获得积分10
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142981
求助须知:如何正确求助?哪些是违规求助? 2794000
关于积分的说明 7809074
捐赠科研通 2450260
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601374