材料科学
光电子学
红外线的
合金
兴奋剂
吸收(声学)
对偶(语法数字)
碳纤维
复合材料
光学
复合数
艺术
物理
文学类
作者
Wenhuan Huang,Ming Song,Shun Wang,Bokun Wang,Jiachen Ma,Tong Liu,Yanan Zhang,Yifan Kang,Renchao Che
标识
DOI:10.1002/adma.202403322
摘要
2D layered metallic graphite composites are promising electromagnetic wave absorption materials (EWAMs) for their combined properties of abundant interlayer free spaces, rich metallic polarized sites, and high conductivity, but the controllable synthesis remains rather challenging. Herein, a dual-step redox engineering strategy is developed by employing cobalt boron imidazolate framework (Co-BIF) to construct 2D CoNi-alloy embedded B, N-doped carbon layers (2D-CNC) as a promising EWAM. In the first step, a chemical etching oxidation process on Co-BIF is used to obtain an optimized 2D-CoNi-layered double hydroxide (2D-CoNi-LDH) intermediate and in the second, high-temperature calcination reduction is implemented to modify graphitization of the degree of the 2D-CNC. The obtained sample delivers superior reflection loss (RL
科研通智能强力驱动
Strongly Powered by AbleSci AI