Inverse kinematics analysis of a wrist rehabilitation robot using artificial neural network and adaptive Neuro-Fuzzy inference system

人工神经网络 自适应神经模糊推理系统 运动学 人工智能 神经模糊 计算机科学 推理系统 反向动力学 机器人 模糊逻辑 模糊控制系统 物理 经典力学
作者
Behzad Saeedi,Majid M. Moghaddam,Majid Sadedel
出处
期刊:Mechanics Based Design of Structures and Machines [Informa]
卷期号:: 1-49
标识
DOI:10.1080/15397734.2024.2356066
摘要

This paper offers a comprehensive investigation into the forward and inverse kinematics of a wrist rehabilitation robot, utilizing the Denavit-Hartenberg method for forward kinematics (FK) and a geometric approach, as well as artificial neural networks (ANN) and adaptive Neuro-Fuzzy inference systems (ANFIS) for inverse kinematics (IK) analysis. While the geometric method entails precise parameter measurements and faces uncertainties, ANN and ANFIS are explored as potential remedies to enhance accuracy and robustness. Evaluating 11 different training functions sourced from existing literature, our study conducts a thorough assessment of their performance within an ANN network. We aim to pinpoint the most suitable training function for achieving optimal IK solutions in the context of a wrist rehabilitation robotic. Additionally, the ANFIS model, trained using Fuzzy C-Means (FCM), sets itself apart from Grid Partitioning (GP) and Subtractive Clustering (SC). Among the ANN training functions, Bayesian regularization with 5 hidden layers emerges as the most effective, yielding low root mean square error (RMSE) values of 0.003, 0.004, and 0.007 degrees for pronation/supination (P/S), abduction/adduction (AB/AD), and flexion/extension (F/E), respectively. Conversely, ANFIS, trained with FCM, demonstrates satisfactory yet less precise results, with RMSE values of 0.191, 0.082, and 0.165 degrees for P/S, AB/AD, and F/E, respectively. Despite its adequacy, ANFIS trails behind ANN, showcasing RMSE reductions of 98.4%, 95.1%, and 95.7% for P/S, AB/AD, and F/E angles, respectively. This study contributes to leveraging ANN and ANFIS for IK analysis in wrist rehabilitation robotics, highlighting the efficacy of ANN, particularly when employing Bayesian regularization, to enhance accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
GQC应助科研通管家采纳,获得30
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
不懈奋进应助科研通管家采纳,获得30
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
4秒前
nhou关注了科研通微信公众号
5秒前
科研通AI2S应助tuanheqi采纳,获得20
6秒前
8秒前
北木萧发布了新的文献求助10
10秒前
co发布了新的文献求助10
10秒前
羊青丝发布了新的文献求助10
13秒前
伊宝宝发布了新的文献求助10
13秒前
14秒前
搜集达人应助王照盼采纳,获得10
14秒前
yichun完成签到,获得积分10
17秒前
shinen完成签到,获得积分10
19秒前
bkagyin应助kingjames采纳,获得10
20秒前
DDJoy完成签到,获得积分10
20秒前
co完成签到,获得积分10
20秒前
eins完成签到,获得积分20
21秒前
大模型应助敲一下叮采纳,获得10
23秒前
23秒前
ding应助无聊的绮菱采纳,获得10
26秒前
26秒前
huang完成签到 ,获得积分10
26秒前
xtz完成签到,获得积分10
27秒前
安静的瑾瑜完成签到 ,获得积分10
28秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212256
求助须知:如何正确求助?哪些是违规求助? 2861151
关于积分的说明 8127381
捐赠科研通 2527070
什么是DOI,文献DOI怎么找? 1360697
科研通“疑难数据库(出版商)”最低求助积分说明 643289
邀请新用户注册赠送积分活动 615635