高光谱成像
异常检测
特征(语言学)
人工智能
模式识别(心理学)
计算机科学
异常(物理)
特征提取
遥感
地质学
物理
哲学
语言学
凝聚态物理
作者
Xi Cheng,Yu Huo,Sheng Lin,Youqiang Dong,Shaobo Zhao,Min Zhang,Hai Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:73: 1-16
被引量:14
标识
DOI:10.1109/tim.2024.3403211
摘要
Hyperspectral anomaly detection (HAD) is a challenging task since it identifies the anomaly targets without prior knowledge. In recent years, deep learning methods have emerged as one of the most popular algorithms in the HAD. These methods operate on the assumption that the background is well reconstructed while anomalies cannot, and the degree of anomaly for each pixel is represented by reconstruction errors. However, most approaches treat all background pixels of a hyperspectral image (HSI) as one type of ground object. This assumption does not always hold in practical scenes, making it difficult to distinguish between backgrounds and anomalies effectively. To address this issue, a novel deep feature aggregation network (DFAN) is proposed in this paper, and it develops a new paradigm for HAD to represent multiple patterns of backgrounds. The DFAN adopts an adaptive aggregation model, which combines the orthogonal spectral attention module with the background-anomaly category statistics module. This allows effective utilization of spectral and spatial information to capture the distribution of the background and anomaly. To optimize the proposed DFAN better, a novel multiple aggregation separation loss is designed, and it is based on the intra-similarity and inter-difference from the background and anomaly. The constraint function reduces the potential anomaly representation and strengthens the potential background representation. Additionally, the extensive experiments on the six real hyperspectral datasets demonstrate that the proposed DFAN achieves superior performance for HAD. The code is available at https://github.com/ChengXi-1217/DFAN-HAD.
科研通智能强力驱动
Strongly Powered by AbleSci AI