Deep Feature Aggregation Network for Hyperspectral Anomaly Detection

高光谱成像 异常检测 特征(语言学) 人工智能 模式识别(心理学) 计算机科学 异常(物理) 特征提取 遥感 地质学 物理 凝聚态物理 语言学 哲学
作者
Xi Cheng,Yu Huo,Sheng Lin,Youqiang Dong,Shaobo Zhao,Min Zhang,Hai Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-16 被引量:21
标识
DOI:10.1109/tim.2024.3403211
摘要

Hyperspectral anomaly detection (HAD) is a challenging task since it identifies the anomaly targets without prior knowledge. In recent years, deep learning methods have emerged as one of the most popular algorithms in the HAD. These methods operate on the assumption that the background is well reconstructed while anomalies cannot, and the degree of anomaly for each pixel is represented by reconstruction errors. However, most approaches treat all background pixels of a hyperspectral image (HSI) as one type of ground object. This assumption does not always hold in practical scenes, making it difficult to distinguish between backgrounds and anomalies effectively. To address this issue, a novel deep feature aggregation network (DFAN) is proposed in this paper, and it develops a new paradigm for HAD to represent multiple patterns of backgrounds. The DFAN adopts an adaptive aggregation model, which combines the orthogonal spectral attention module with the background-anomaly category statistics module. This allows effective utilization of spectral and spatial information to capture the distribution of the background and anomaly. To optimize the proposed DFAN better, a novel multiple aggregation separation loss is designed, and it is based on the intra-similarity and inter-difference from the background and anomaly. The constraint function reduces the potential anomaly representation and strengthens the potential background representation. Additionally, the extensive experiments on the six real hyperspectral datasets demonstrate that the proposed DFAN achieves superior performance for HAD. The code is available at https://github.com/ChengXi-1217/DFAN-HAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
世界上最后一只呜呜怪完成签到,获得积分10
刚刚
SYLH完成签到,获得积分0
刚刚
刚刚
刚刚
刚刚
香蕉觅云应助Yara.H采纳,获得10
刚刚
刚刚
看文献了完成签到,获得积分10
刚刚
drew完成签到 ,获得积分10
2秒前
111完成签到 ,获得积分10
2秒前
Rainielove0215完成签到,获得积分0
3秒前
猪蹄发布了新的文献求助10
3秒前
暴躁的海ge完成签到,获得积分10
3秒前
Liangc333发布了新的文献求助10
4秒前
香蕉海白发布了新的文献求助10
4秒前
4秒前
4秒前
anny2022发布了新的文献求助10
6秒前
feihesl完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
狂野尔烟发布了新的文献求助10
7秒前
橙汁完成签到,获得积分10
7秒前
8秒前
劲秉应助jinjun采纳,获得10
9秒前
Chenmd2001完成签到,获得积分10
9秒前
9秒前
yxy999完成签到,获得积分10
10秒前
刘雅彪完成签到 ,获得积分10
10秒前
局外人完成签到,获得积分10
10秒前
安静大树发布了新的文献求助10
10秒前
11秒前
PhysicsXX完成签到,获得积分10
11秒前
拼搏绿柳完成签到,获得积分10
11秒前
乐乐完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
en完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Greene's Protective Groups in Organic Synthesis 2025 600
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666701
求助须知:如何正确求助?哪些是违规求助? 3225657
关于积分的说明 9764320
捐赠科研通 2935460
什么是DOI,文献DOI怎么找? 1607736
邀请新用户注册赠送积分活动 759338
科研通“疑难数据库(出版商)”最低求助积分说明 735281