纳米团簇
催化作用
介孔材料
材料科学
兴奋剂
碳纤维
氮气
纳米颗粒
化学工程
无机化学
化学
纳米技术
光化学
有机化学
复合数
光电子学
工程类
复合材料
作者
Huacheng Zhao,Chuang Liu,Yi Zheng,Shuwen Li,Yan Gao,Qihe Ma,Fushan Wang,Zhengping Dong
标识
DOI:10.1021/acscatal.4c02348
摘要
The controlled fabrication of metal nanocluster-based catalysts with high catalytic performance and stability is currently a research hotspot, while it is still a research challenge. Herein, nitrogen-doped mesoporous carbon spheres (CS-N) with a regular and open structure were precisely designed and prepared. Pd nanoclusters with an average size of 1.44 nm were highly dispersed and stably confined in the radial mesoporous structure of CS-N, forming Pd/CS-N catalysts. The obtained Pd/CS-N catalysts showed high catalytic performance in the hydrogenation of phenol to cyclohexanone and hydrogenation of benzoic acid to cyclohexanecarboxylic acid (yield of almost 99%) under mild reaction conditions, outperforming most reported Pd nanoparticle-based catalysts. Theoretical calculation illustrates that the Pd nanocluster exists as an electron-deficient state on Pd/CS-N, thus can efficiently facilitate reactant preadsorption and activation, and also reduce the Gibbs free energy of the rate-determining step of the hydrogenation reactions. Moreover, the Pd/CS-N catalyst exhibited good reusability and stability. Thus, this work will promote the precise construction of stable metal nanocluster-based catalysts, enabling highly efficient catalytic hydrogenation reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI