Development and validation of a novel nomogram for predicting good neoangiogenesis after encephaloduroarteriosynangiosis in patients with moyamoya disease and type 2 diabetes mellitus: a case-control study

列线图 医学 烟雾病 EDAS系统 糖尿病 单变量分析 逻辑回归 2型糖尿病 内科学 颈内动脉 外科 阶段(地层学) 多元分析 内分泌学 分布估计算法 古生物学 算法 计算机科学 生物
作者
Jingjie Li,Bin Ren,Xiaopeng Wang,Qian‐Nan Wang,Xiang‐Yang Bao,Qing-Bao Guo,Ziqing Kong,Jiaqi Liu,Gan Gao,Minjie Wang,Simeng Liu,Heguan Fu,Huaiyu Tong,Lian Duan
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:141 (5): 1177-1186 被引量:1
标识
DOI:10.3171/2024.2.jns24208
摘要

OBJECTIVE Diabetes is often linked to poorer outcomes in patients with moyamoya disease (MMD). However, experience has shown that certain individuals with diabetes have favorable outcomes after encephaloduroarteriosynangiosis (EDAS). The authors aimed to develop a nomogram to predict good neoangiogenesis in patients with MMD and type 2 diabetes mellitus (T2DM) to aid neurosurgeons in the identification of suitable candidates for EDAS. METHODS Adults with MMD and T2DM who underwent EDAS between June 2004 and December 2018 were included in the analysis. In total, 126 patients (213 hemispheres) with MMD and T2DM from the Fifth Medical Centre of the Chinese PLA General Hospital were included and randomly divided into training (152 hemispheres) and internal validation (61 hemispheres) cohorts at a ratio of 7:3. Univariate logistic and least absolute shrinkage and selection operator regression analyses were used to identify the significant factors associated with good neoangiogenesis, which were used to develop a nomogram. The discrimination, calibration, and clinical utility were assessed. RESULTS A total of 213 hemispheres in 126 patients were reviewed, including 152 (71.36%) hemispheres with good postoperative collateral formation and 61 (28.64%) with poor postoperative collateral formation. The authors selected 4 predictors (FGD5 rs11128722, VEGFA rs9472135, Suzuki stage, and internal carotid artery [ICA] moyamoya vessels) for nomogram development. The C-indices of the nomogram in the training and internal validation cohorts were 0.873 and 0.841, respectively. The nomogram exhibited a sensitivity of 84.5% and specificity of 81.0%. The positive and negative predictive values were 92.1% and 66.7%, respectively. The calibration curves indicated high predictive accuracy, and receiver operating characteristic curve analysis showed the superiority of the nomogram. The decision-making analysis validated the fitness and clinical application value of this nomogram. Then a web-based calculator to facilitate clinical application was generated. CONCLUSIONS The nomogram developed in this study accurately predicted neoangiogenesis in patients with MMD and T2DM after EDAS and may assist neurosurgeons in identifying suitable candidates for indirect revascularization surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TingtingGZ发布了新的文献求助10
刚刚
脑洞疼应助付佳彤采纳,获得10
1秒前
zqq123完成签到,获得积分10
1秒前
Dr.He完成签到,获得积分10
1秒前
丁牛青发布了新的文献求助10
2秒前
wsf2023发布了新的文献求助10
2秒前
2秒前
7777777发布了新的文献求助10
2秒前
Dr.He发布了新的文献求助10
4秒前
诗瑜完成签到,获得积分10
4秒前
我有一只小毛驴从来也不骑完成签到,获得积分10
4秒前
5秒前
licheng完成签到,获得积分10
5秒前
5秒前
Peng完成签到 ,获得积分10
5秒前
zanyez完成签到,获得积分10
6秒前
zcl发布了新的文献求助10
6秒前
7秒前
8秒前
JamesPei应助郑旭辉采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
吉吉国王的跟班完成签到 ,获得积分10
10秒前
11秒前
JJ完成签到,获得积分10
11秒前
顺心凡之完成签到,获得积分10
11秒前
李爱国应助Dr.He采纳,获得10
11秒前
13秒前
努力向上的小刘完成签到,获得积分10
13秒前
axt发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助燕子采纳,获得10
14秒前
15秒前
再睡亿分钟完成签到,获得积分10
15秒前
婷123完成签到,获得积分10
15秒前
顾矜应助CHOSEN1采纳,获得10
16秒前
传统的青完成签到,获得积分10
17秒前
小黄发布了新的文献求助10
17秒前
17秒前
科研通AI6应助张张采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952