Development and validation of a novel nomogram for predicting good neoangiogenesis after encephaloduroarteriosynangiosis in patients with moyamoya disease and type 2 diabetes mellitus: a case-control study

列线图 医学 烟雾病 EDAS系统 糖尿病 单变量分析 逻辑回归 2型糖尿病 内科学 颈内动脉 外科 阶段(地层学) 多元分析 内分泌学 分布估计算法 古生物学 算法 计算机科学 生物
作者
Jingjie Li,Bin Ren,Xiaopeng Wang,Qian‐Nan Wang,Xiang‐Yang Bao,Qing-Bao Guo,Ziqing Kong,Jiaqi Liu,Gan Gao,Minjie Wang,Simeng Liu,Heguan Fu,Huaiyu Tong,Lian Duan
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:141 (5): 1177-1186 被引量:1
标识
DOI:10.3171/2024.2.jns24208
摘要

OBJECTIVE Diabetes is often linked to poorer outcomes in patients with moyamoya disease (MMD). However, experience has shown that certain individuals with diabetes have favorable outcomes after encephaloduroarteriosynangiosis (EDAS). The authors aimed to develop a nomogram to predict good neoangiogenesis in patients with MMD and type 2 diabetes mellitus (T2DM) to aid neurosurgeons in the identification of suitable candidates for EDAS. METHODS Adults with MMD and T2DM who underwent EDAS between June 2004 and December 2018 were included in the analysis. In total, 126 patients (213 hemispheres) with MMD and T2DM from the Fifth Medical Centre of the Chinese PLA General Hospital were included and randomly divided into training (152 hemispheres) and internal validation (61 hemispheres) cohorts at a ratio of 7:3. Univariate logistic and least absolute shrinkage and selection operator regression analyses were used to identify the significant factors associated with good neoangiogenesis, which were used to develop a nomogram. The discrimination, calibration, and clinical utility were assessed. RESULTS A total of 213 hemispheres in 126 patients were reviewed, including 152 (71.36%) hemispheres with good postoperative collateral formation and 61 (28.64%) with poor postoperative collateral formation. The authors selected 4 predictors (FGD5 rs11128722, VEGFA rs9472135, Suzuki stage, and internal carotid artery [ICA] moyamoya vessels) for nomogram development. The C-indices of the nomogram in the training and internal validation cohorts were 0.873 and 0.841, respectively. The nomogram exhibited a sensitivity of 84.5% and specificity of 81.0%. The positive and negative predictive values were 92.1% and 66.7%, respectively. The calibration curves indicated high predictive accuracy, and receiver operating characteristic curve analysis showed the superiority of the nomogram. The decision-making analysis validated the fitness and clinical application value of this nomogram. Then a web-based calculator to facilitate clinical application was generated. CONCLUSIONS The nomogram developed in this study accurately predicted neoangiogenesis in patients with MMD and T2DM after EDAS and may assist neurosurgeons in identifying suitable candidates for indirect revascularization surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助凶狠的纸飞机采纳,获得10
刚刚
好运来发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
唐代斯发布了新的文献求助10
5秒前
嗯嗯发布了新的文献求助10
5秒前
6秒前
6秒前
懦弱的洋完成签到,获得积分10
6秒前
7秒前
a379896033完成签到 ,获得积分10
7秒前
singyu9完成签到,获得积分10
7秒前
渔婆完成签到,获得积分10
7秒前
7秒前
7秒前
Canoe发布了新的文献求助10
7秒前
欢喜的元枫完成签到 ,获得积分10
8秒前
小蘑菇应助冷傲书萱采纳,获得10
9秒前
9秒前
梅子完成签到 ,获得积分10
9秒前
好运来完成签到,获得积分20
10秒前
曾经山灵完成签到 ,获得积分20
10秒前
10秒前
无糖的问题完成签到,获得积分10
11秒前
xzy发布了新的文献求助10
12秒前
12秒前
明亮荔枝应助嗖嗖采纳,获得15
13秒前
13秒前
13秒前
msk完成签到 ,获得积分10
13秒前
qqqq完成签到,获得积分10
14秒前
ghostpants完成签到,获得积分10
14秒前
CACT完成签到,获得积分10
15秒前
乐乐应助完美钢铁侠采纳,获得10
15秒前
16秒前
上官若男应助catherine采纳,获得30
17秒前
小羊发布了新的文献求助10
17秒前
蓝天应助Yyuan采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893