Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer

放射基因组学 转录组 前列腺癌 医学 磁共振成像 癌症 成像生物标志物 计算生物学 生物信息学 放射科 无线电技术 生物 内科学 基因 基因表达 遗传学
作者
Catarina Dinis Fernandes,Annekoos Schaap,J A Kant,Petra J. van Houdt,Hessel Wijkstra,Elise M. Bekers,Simon Linder,Andries M. Bergman,Uulke A. van der Heide,Massimo Mischi,Wilbert Zwart,Federica Eduati,Simona Turco
出处
期刊:Cancers [MDPI AG]
卷期号:15 (12): 3074-3074 被引量:9
标识
DOI:10.3390/cancers15123074
摘要

Prostate cancer (PCa) is a highly prevalent cancer type with a heterogeneous prognosis. An accurate assessment of tumor aggressiveness can pave the way for tailored treatment strategies, potentially leading to better outcomes. While tumor aggressiveness is typically assessed based on invasive methods (e.g., biopsy), radiogenomics, combining diagnostic imaging with genomic information can help uncover aggressive (imaging) phenotypes, which in turn can provide non-invasive advice on individualized treatment regimens. In this study, we carried out a parallel analysis on both imaging and transcriptomics data in order to identify features associated with clinically significant PCa (defined as an ISUP grade ≥ 3), subsequently evaluating the correlation between them. Textural imaging features were extracted from multi-parametric MRI sequences (T2W, DWI, and DCE) and combined with DCE-derived parametric pharmacokinetic maps obtained using magnetic resonance dispersion imaging (MRDI). A transcriptomic analysis was performed to derive functional features on transcription factors (TFs), and pathway activity from RNA sequencing data, here referred to as transcriptomic features. For both the imaging and transcriptomic features, different machine learning models were separately trained and optimized to classify tumors in either clinically insignificant or significant PCa. These models were validated in an independent cohort and model performance was used to isolate a subset of relevant imaging and transcriptomic features to be further investigated. A final set of 31 imaging features was correlated to 33 transcriptomic features obtained on the same tumors. Five significant correlations (p < 0.05) were found, of which, three had moderate strength (|r| ≥ 0.5). The strongest significant correlations were seen between a perfusion-based imaging feature-MRDI A median-and the activities of the TFs STAT6 (-0.64) and TFAP2A (-0.50). A higher-order T2W textural feature was also significantly correlated to the activity of the TF STAT6 (-0.58). STAT6 plays an important role in controlling cell proliferation and migration. Loss of the AP2alpha protein expression, quantified by TFAP2A, has been strongly associated with aggressiveness and progression in PCa. According to our findings, a combination of texture features extracted from T2W and DCE, as well as perfusion-based pharmacokinetic features, can be considered for the prediction of clinically significant PCa, with the pharmacokinetic MRDI A feature being the most correlated with the underlying transcriptomic information. These results highlight a link between quantitative imaging features and the underlying transcriptomic landscape of prostate tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋天的雪完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
可爱的函函应助my采纳,获得10
1秒前
细腻砖头完成签到,获得积分10
1秒前
2秒前
研友_nxV4m8完成签到,获得积分10
2秒前
沉默的便当完成签到,获得积分10
2秒前
跳跃馒头发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
5秒前
Singularity发布了新的文献求助30
6秒前
随便取完成签到,获得积分10
7秒前
科研通AI6应助Aicy1111111采纳,获得10
7秒前
CeciliaLee发布了新的文献求助10
7秒前
7秒前
Sschi完成签到 ,获得积分10
7秒前
不重名了啊完成签到,获得积分10
8秒前
HR112应助lihaifeng采纳,获得10
8秒前
YY完成签到,获得积分10
8秒前
9秒前
Owen应助zmj采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
钟博士发布了新的文献求助30
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
嘻嘻哈哈应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
10秒前
丰富的天亦完成签到,获得积分10
10秒前
10秒前
junjun发布了新的文献求助10
10秒前
jphu发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317139
求助须知:如何正确求助?哪些是违规求助? 4459587
关于积分的说明 13875850
捐赠科研通 4349563
什么是DOI,文献DOI怎么找? 2388945
邀请新用户注册赠送积分活动 1383134
关于科研通互助平台的介绍 1352384