亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer

放射基因组学 多参数磁共振成像 前列腺癌 医学 癌症 放射科 无线电技术 内科学
作者
Catarina Fernandes,Albertus Schaap,Jeffrey A. Kant,Petra J. van Houdt,Hessel Wijkstra,Elise M. Bekers,Simon Linder,Andries M. Bergman,Uulke A. van der Heide,Massimo Mischi,Wilbert Zwart,Federica Eduati,Simona Turco
出处
期刊:Cancers [MDPI AG]
卷期号:15 (12): 3074-3074 被引量:4
标识
DOI:10.3390/cancers15123074
摘要

Prostate cancer (PCa) is a highly prevalent cancer type with a heterogeneous prognosis. An accurate assessment of tumor aggressiveness can pave the way for tailored treatment strategies, potentially leading to better outcomes. While tumor aggressiveness is typically assessed based on invasive methods (e.g., biopsy), radiogenomics, combining diagnostic imaging with genomic information can help uncover aggressive (imaging) phenotypes, which in turn can provide non-invasive advice on individualized treatment regimens. In this study, we carried out a parallel analysis on both imaging and transcriptomics data in order to identify features associated with clinically significant PCa (defined as an ISUP grade ≥ 3), subsequently evaluating the correlation between them. Textural imaging features were extracted from multi-parametric MRI sequences (T2W, DWI, and DCE) and combined with DCE-derived parametric pharmacokinetic maps obtained using magnetic resonance dispersion imaging (MRDI). A transcriptomic analysis was performed to derive functional features on transcription factors (TFs), and pathway activity from RNA sequencing data, here referred to as transcriptomic features. For both the imaging and transcriptomic features, different machine learning models were separately trained and optimized to classify tumors in either clinically insignificant or significant PCa. These models were validated in an independent cohort and model performance was used to isolate a subset of relevant imaging and transcriptomic features to be further investigated. A final set of 31 imaging features was correlated to 33 transcriptomic features obtained on the same tumors. Five significant correlations (p < 0.05) were found, of which, three had moderate strength (|r| ≥ 0.5). The strongest significant correlations were seen between a perfusion-based imaging feature-MRDI A median-and the activities of the TFs STAT6 (-0.64) and TFAP2A (-0.50). A higher-order T2W textural feature was also significantly correlated to the activity of the TF STAT6 (-0.58). STAT6 plays an important role in controlling cell proliferation and migration. Loss of the AP2alpha protein expression, quantified by TFAP2A, has been strongly associated with aggressiveness and progression in PCa. According to our findings, a combination of texture features extracted from T2W and DCE, as well as perfusion-based pharmacokinetic features, can be considered for the prediction of clinically significant PCa, with the pharmacokinetic MRDI A feature being the most correlated with the underlying transcriptomic information. These results highlight a link between quantitative imaging features and the underlying transcriptomic landscape of prostate tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听闻墨笙完成签到 ,获得积分10
10秒前
安有才完成签到,获得积分10
16秒前
17秒前
20秒前
nagisa发布了新的文献求助10
21秒前
YXH发布了新的文献求助10
24秒前
田様应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
Lucas应助YXH采纳,获得10
31秒前
1分钟前
闪闪寒荷完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
jixieshiren发布了新的文献求助10
1分钟前
小吴同学发布了新的文献求助10
1分钟前
00暮霭沉沉00完成签到,获得积分10
1分钟前
linjiaxin完成签到,获得积分10
2分钟前
LLL应助小吴同学采纳,获得10
2分钟前
2分钟前
滴滴发布了新的文献求助10
2分钟前
monica发布了新的文献求助10
2分钟前
2分钟前
冯大哥完成签到,获得积分10
2分钟前
3分钟前
力行发布了新的文献求助10
3分钟前
3分钟前
力行发布了新的文献求助20
3分钟前
3分钟前
健忘沛春完成签到 ,获得积分10
3分钟前
科研通AI2S应助彩色德天采纳,获得10
3分钟前
monica发布了新的文献求助10
3分钟前
奔波霸完成签到 ,获得积分10
3分钟前
Hayat应助力行采纳,获得10
3分钟前
Polymer72应助xxyqddx采纳,获得10
3分钟前
HR112完成签到 ,获得积分10
4分钟前
饱满涵蕾发布了新的文献求助10
4分钟前
隐形曼青应助桀骜采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
loen完成签到,获得积分10
4分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353475
求助须知:如何正确求助?哪些是违规求助? 2978095
关于积分的说明 8683663
捐赠科研通 2659409
什么是DOI,文献DOI怎么找? 1456252
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665016