Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer

放射基因组学 转录组 前列腺癌 医学 磁共振成像 癌症 成像生物标志物 计算生物学 生物信息学 放射科 无线电技术 生物 内科学 基因 基因表达 遗传学
作者
Catarina Dinis Fernandes,Annekoos Schaap,J A Kant,Petra J. van Houdt,Hessel Wijkstra,Elise M. Bekers,Simon Linder,Andries M. Bergman,Uulke A. van der Heide,Massimo Mischi,Wilbert Zwart,Federica Eduati,Simona Turco
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 3074-3074 被引量:9
标识
DOI:10.3390/cancers15123074
摘要

Prostate cancer (PCa) is a highly prevalent cancer type with a heterogeneous prognosis. An accurate assessment of tumor aggressiveness can pave the way for tailored treatment strategies, potentially leading to better outcomes. While tumor aggressiveness is typically assessed based on invasive methods (e.g., biopsy), radiogenomics, combining diagnostic imaging with genomic information can help uncover aggressive (imaging) phenotypes, which in turn can provide non-invasive advice on individualized treatment regimens. In this study, we carried out a parallel analysis on both imaging and transcriptomics data in order to identify features associated with clinically significant PCa (defined as an ISUP grade ≥ 3), subsequently evaluating the correlation between them. Textural imaging features were extracted from multi-parametric MRI sequences (T2W, DWI, and DCE) and combined with DCE-derived parametric pharmacokinetic maps obtained using magnetic resonance dispersion imaging (MRDI). A transcriptomic analysis was performed to derive functional features on transcription factors (TFs), and pathway activity from RNA sequencing data, here referred to as transcriptomic features. For both the imaging and transcriptomic features, different machine learning models were separately trained and optimized to classify tumors in either clinically insignificant or significant PCa. These models were validated in an independent cohort and model performance was used to isolate a subset of relevant imaging and transcriptomic features to be further investigated. A final set of 31 imaging features was correlated to 33 transcriptomic features obtained on the same tumors. Five significant correlations (p < 0.05) were found, of which, three had moderate strength (|r| ≥ 0.5). The strongest significant correlations were seen between a perfusion-based imaging feature-MRDI A median-and the activities of the TFs STAT6 (-0.64) and TFAP2A (-0.50). A higher-order T2W textural feature was also significantly correlated to the activity of the TF STAT6 (-0.58). STAT6 plays an important role in controlling cell proliferation and migration. Loss of the AP2alpha protein expression, quantified by TFAP2A, has been strongly associated with aggressiveness and progression in PCa. According to our findings, a combination of texture features extracted from T2W and DCE, as well as perfusion-based pharmacokinetic features, can be considered for the prediction of clinically significant PCa, with the pharmacokinetic MRDI A feature being the most correlated with the underlying transcriptomic information. These results highlight a link between quantitative imaging features and the underlying transcriptomic landscape of prostate tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
儒雅的秋凌完成签到 ,获得积分10
2秒前
邵大王完成签到,获得积分10
3秒前
3秒前
天天快乐应助Candy采纳,获得40
4秒前
4秒前
4秒前
滕侑林完成签到,获得积分10
5秒前
隐形曼青应助停騮_ 采纳,获得10
6秒前
真实的板凳完成签到,获得积分20
7秒前
miao完成签到,获得积分10
8秒前
陈楠完成签到,获得积分10
8秒前
紫气莲莲完成签到,获得积分10
8秒前
哈哈哈完成签到,获得积分10
8秒前
研究生end应助sunyanghu369采纳,获得20
11秒前
13秒前
yzm完成签到,获得积分10
14秒前
761997580完成签到 ,获得积分10
14秒前
14秒前
14秒前
陈同学完成签到 ,获得积分10
16秒前
18秒前
简单哒完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
20秒前
mingjing发布了新的文献求助10
21秒前
pluto应助杨仲文采纳,获得10
21秒前
SIRT1完成签到,获得积分10
21秒前
21秒前
田的柠檬水完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
请输入昵称完成签到,获得积分10
24秒前
丽丽完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152991
求助须知:如何正确求助?哪些是违规求助? 4348656
关于积分的说明 13539917
捐赠科研通 4191048
什么是DOI,文献DOI怎么找? 2298619
邀请新用户注册赠送积分活动 1298725
关于科研通互助平台的介绍 1243618