清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer

放射基因组学 多参数磁共振成像 前列腺癌 医学 癌症 放射科 无线电技术 内科学
作者
Catarina Fernandes,Albertus Schaap,Jeffrey A. Kant,Petra J. van Houdt,Hessel Wijkstra,Elise M. Bekers,Simon Linder,Andries M. Bergman,Uulke A. van der Heide,Massimo Mischi,Wilbert Zwart,Federica Eduati,Simona Turco
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 3074-3074 被引量:4
标识
DOI:10.3390/cancers15123074
摘要

Prostate cancer (PCa) is a highly prevalent cancer type with a heterogeneous prognosis. An accurate assessment of tumor aggressiveness can pave the way for tailored treatment strategies, potentially leading to better outcomes. While tumor aggressiveness is typically assessed based on invasive methods (e.g., biopsy), radiogenomics, combining diagnostic imaging with genomic information can help uncover aggressive (imaging) phenotypes, which in turn can provide non-invasive advice on individualized treatment regimens. In this study, we carried out a parallel analysis on both imaging and transcriptomics data in order to identify features associated with clinically significant PCa (defined as an ISUP grade ≥ 3), subsequently evaluating the correlation between them. Textural imaging features were extracted from multi-parametric MRI sequences (T2W, DWI, and DCE) and combined with DCE-derived parametric pharmacokinetic maps obtained using magnetic resonance dispersion imaging (MRDI). A transcriptomic analysis was performed to derive functional features on transcription factors (TFs), and pathway activity from RNA sequencing data, here referred to as transcriptomic features. For both the imaging and transcriptomic features, different machine learning models were separately trained and optimized to classify tumors in either clinically insignificant or significant PCa. These models were validated in an independent cohort and model performance was used to isolate a subset of relevant imaging and transcriptomic features to be further investigated. A final set of 31 imaging features was correlated to 33 transcriptomic features obtained on the same tumors. Five significant correlations (p < 0.05) were found, of which, three had moderate strength (|r| ≥ 0.5). The strongest significant correlations were seen between a perfusion-based imaging feature-MRDI A median-and the activities of the TFs STAT6 (-0.64) and TFAP2A (-0.50). A higher-order T2W textural feature was also significantly correlated to the activity of the TF STAT6 (-0.58). STAT6 plays an important role in controlling cell proliferation and migration. Loss of the AP2alpha protein expression, quantified by TFAP2A, has been strongly associated with aggressiveness and progression in PCa. According to our findings, a combination of texture features extracted from T2W and DCE, as well as perfusion-based pharmacokinetic features, can be considered for the prediction of clinically significant PCa, with the pharmacokinetic MRDI A feature being the most correlated with the underlying transcriptomic information. These results highlight a link between quantitative imaging features and the underlying transcriptomic landscape of prostate tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DHW1703701完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
13秒前
Orange应助嘟嘟噜采纳,获得10
14秒前
满意的伊完成签到,获得积分10
19秒前
19秒前
南风完成签到 ,获得积分10
26秒前
独孤完成签到 ,获得积分10
26秒前
Joan_89发布了新的文献求助20
29秒前
醉熏的千柳完成签到 ,获得积分10
33秒前
蛋挞完成签到 ,获得积分10
53秒前
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
songge完成签到,获得积分10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
默11完成签到 ,获得积分10
2分钟前
跳跃的鹏飞完成签到 ,获得积分10
2分钟前
Joan_89完成签到,获得积分10
2分钟前
Luanyb完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Regina完成签到 ,获得积分10
2分钟前
西瓜完成签到 ,获得积分10
2分钟前
2分钟前
坦率雪枫完成签到 ,获得积分10
2分钟前
2分钟前
吴晓娟完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
YWang完成签到,获得积分20
3分钟前
4分钟前
安安爱阎魔完成签到,获得积分10
4分钟前
Freya发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
通科研完成签到 ,获得积分10
4分钟前
fogsea完成签到,获得积分0
4分钟前
tsntn完成签到,获得积分10
4分钟前
fdwang完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015451
求助须知:如何正确求助?哪些是违规求助? 3555379
关于积分的说明 11318024
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012