A multi-level modeling approach for predicting real-estate dynamics

房地产 计量经济学 变量 房价 价值(数学) 回归分析 变量(数学) 需求预测 计算机科学 索引(排版) 运筹学 经济 工程类 财务 数学 机器学习 数学分析 万维网
作者
Vinayaka Gude
出处
期刊:International Journal of Housing Markets and Analysis [Emerald (MCB UP)]
卷期号:17 (1): 48-59 被引量:6
标识
DOI:10.1108/ijhma-02-2023-0024
摘要

Purpose This research developed a model to understand and predict housing market dynamics and evaluate the significance of house permits data in the model’s forecasting capability. Design/methodology/approach The research uses a multilevel algorithm consisting of a machine-learning regression model to predict the independent variables and another regressor to predict the dependent variable using the forecasted independent variables. Findings The research establishes a statistically significant relationship between housing permits and house prices. The novel approach discussed in this paper has significantly higher prediction capabilities than a traditional regression model in forecasting monthly average prices (R-squared value: 0.5993), house price index prices (R-squared value: 0.99) and house sales prices (R-squared value: 0.7839). Research limitations/implications The impact of supply, demand and socioeconomic factors will differ in various regions. The forecasting capability and significance of the independent variables can vary, but the methodology can still be applicable when provided with the considered variables in the model. Practical implications The resulting model is helpful in the decision-making process for investments, house purchases and construction as the housing demand increases across various cities. The methodology can benefit multiple players, including the government, real estate investors, homebuyers and construction companies. Originality/value Existing algorithms and models do not consider the number of new house constructions, monthly sales and inventory in the real estate market, especially in the United States. This research aims to address these shortcomings using current socioeconomic indicators, permits, monthly real estate data and population information to predict house prices and inventory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白关注了科研通微信公众号
刚刚
1秒前
yliaoyou完成签到,获得积分10
1秒前
wangkun090121发布了新的文献求助10
1秒前
辛勤梦安发布了新的文献求助10
1秒前
啸天狼狗完成签到,获得积分10
2秒前
Mandy完成签到,获得积分10
3秒前
李健应助忘多采纳,获得10
5秒前
wan发布了新的文献求助30
5秒前
5秒前
qq发布了新的文献求助80
5秒前
6秒前
学术通zzz应助红叶采纳,获得10
6秒前
6秒前
小二郎应助bsnsjsjd采纳,获得30
8秒前
8秒前
英俊的铭应助JUZI采纳,获得10
9秒前
9秒前
Ender完成签到,获得积分10
10秒前
科目三应助繁荣的映雁采纳,获得10
11秒前
洪山老狗完成签到,获得积分20
11秒前
阿波罗完成签到 ,获得积分10
11秒前
安详怜蕾发布了新的文献求助10
12秒前
研友_LpvPkZ发布了新的文献求助30
13秒前
FashionBoy应助懵了采纳,获得10
13秒前
lzl007发布了新的文献求助10
13秒前
司空豁完成签到,获得积分10
14秒前
橘子圭令完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
wan完成签到,获得积分10
16秒前
valere完成签到 ,获得积分10
16秒前
大威天龙完成签到,获得积分10
17秒前
20秒前
20秒前
等待孤风应助疯狂的醉波采纳,获得10
21秒前
22秒前
忘多发布了新的文献求助10
22秒前
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327916
求助须知:如何正确求助?哪些是违规求助? 2958108
关于积分的说明 8589214
捐赠科研通 2636402
什么是DOI,文献DOI怎么找? 1442937
科研通“疑难数据库(出版商)”最低求助积分说明 668449
邀请新用户注册赠送积分活动 655663