Approach for Monitoring Spatiotemporal Changes in Fractional Vegetation Cover Through Unmanned Aerial System-Guided-Satellite Survey: A Case Study in Mining Area

遥感 植被(病理学) 卫星 卫星图像 环境科学 像素 比例(比率) 图像分辨率 土地覆盖 采样(信号处理) 计算机科学 地图学 地理 人工智能 土地利用 生态学 探测器 电信 航空航天工程 病理 工程类 生物 医学
作者
Shuang Wu,Lei Deng,Jun Zhai,Zhuo Lu,Yanjie Wu,Yan Chen,Lijie Guo,Haifeng Gao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 5502-5513 被引量:2
标识
DOI:10.1109/jstars.2023.3284913
摘要

Fractional vegetation cover (FVC) is a vital indicator for monitoring regional vegetation and ecology. Although satellite remote sensing is used to monitor long-term changes in regional FVC, its applications are limited by the spatial resolution. Moreover, for unmanned aerial systems (UASs), obtaining long-term and large-scale images is difficult, and the efficiency of the synergy between UAS and satellite data for long-term FVC monitoring is limited. This article considered a mining area with extreme changes in vegetation as an example and proposed an efficient approach called multiple spatiotemporal-scale FVC prediction (MSFP) for long-term FVC monitoring in the region, which is based on the synergy of high spatial-resolution UAS data with high temporal-resolution Landsat data. First, we used the UAS imagery of several typical mining areas in Qianxi County of China collected in 2021, from which the vegetation information was extracted. Second, the 2-D Gaussian sampling was applied to aggregate, that is, to join/connect them into Landsat pixels. The vegetation index (VI) calculated from contemporary Landsat imagery was further used with the aggregated FVC of each satellite pixel. Finally, the VIs from the satellite imagery for different years were calibrated. The analysis demonstrated that: first, the proposed MSFP yielded improved the coefficient of determination (by 0.437) and decreased root-mean-square error (by 0.200) than the traditional dimidiate pixel method based on satellite imagery; second, the UAS imagery for few typical areas was used to predict the FVC of the large-scale area, thereby providing fine-scale vegetation information; third, the MSFP achieved high accuracy and long-term FVC monitoring by interyear calibration of VI calculated from Landsat data. This article paves the way toward accurate long-term monitoring of regional FVC. The demonstrated methodological framework is simple and operable, thereby opening the prospects for its applications in other environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩手链发布了新的文献求助10
1秒前
skyleon发布了新的文献求助10
2秒前
依依发布了新的文献求助30
2秒前
爆米花应助感动语蝶采纳,获得30
3秒前
4秒前
4秒前
4秒前
7秒前
SciGPT应助mariawang采纳,获得10
8秒前
VDC应助尤狸子采纳,获得30
8秒前
科研人发布了新的文献求助10
9秒前
亚克西完成签到,获得积分10
9秒前
han完成签到,获得积分10
10秒前
10秒前
依依完成签到,获得积分10
11秒前
11秒前
13秒前
冷静雅香完成签到 ,获得积分10
13秒前
科研人完成签到,获得积分10
13秒前
www发布了新的文献求助10
13秒前
14秒前
Orange应助han采纳,获得10
16秒前
lhr完成签到,获得积分10
16秒前
李健的小迷弟应助袁衣采纳,获得10
19秒前
科研通AI2S应助感动语蝶采纳,获得10
20秒前
21秒前
23秒前
25秒前
落后的铭发布了新的文献求助10
25秒前
26秒前
甜蜜的无声完成签到,获得积分10
26秒前
青风完成签到,获得积分10
27秒前
马德里完成签到 ,获得积分10
28秒前
Ava应助skyleon采纳,获得10
29秒前
29秒前
32秒前
能干太清发布了新的文献求助10
34秒前
36秒前
36秒前
Xixihaha完成签到,获得积分10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243839
求助须知:如何正确求助?哪些是违规求助? 2887618
关于积分的说明 8249504
捐赠科研通 2556366
什么是DOI,文献DOI怎么找? 1384479
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625809