Approach for Monitoring Spatiotemporal Changes in Fractional Vegetation Cover Through Unmanned Aerial System-Guided-Satellite Survey: A Case Study in Mining Area

遥感 植被(病理学) 卫星 卫星图像 环境科学 像素 比例(比率) 图像分辨率 土地覆盖 采样(信号处理) 计算机科学 地图学 地理 人工智能 土地利用 生态学 探测器 电信 医学 病理 航空航天工程 工程类 生物
作者
Shuang Wu,Lei Deng,Jun Zhai,Zhuo Lu,Yanjie Wu,Yan Chen,Lijie Guo,Haifeng Gao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 5502-5513 被引量:2
标识
DOI:10.1109/jstars.2023.3284913
摘要

Fractional vegetation cover (FVC) is a vital indicator for monitoring regional vegetation and ecology. Although satellite remote sensing is used to monitor long-term changes in regional FVC, its applications are limited by the spatial resolution. Moreover, for unmanned aerial systems (UASs), obtaining long-term and large-scale images is difficult, and the efficiency of the synergy between UAS and satellite data for long-term FVC monitoring is limited. This article considered a mining area with extreme changes in vegetation as an example and proposed an efficient approach called multiple spatiotemporal-scale FVC prediction (MSFP) for long-term FVC monitoring in the region, which is based on the synergy of high spatial-resolution UAS data with high temporal-resolution Landsat data. First, we used the UAS imagery of several typical mining areas in Qianxi County of China collected in 2021, from which the vegetation information was extracted. Second, the 2-D Gaussian sampling was applied to aggregate, that is, to join/connect them into Landsat pixels. The vegetation index (VI) calculated from contemporary Landsat imagery was further used with the aggregated FVC of each satellite pixel. Finally, the VIs from the satellite imagery for different years were calibrated. The analysis demonstrated that: first, the proposed MSFP yielded improved the coefficient of determination (by 0.437) and decreased root-mean-square error (by 0.200) than the traditional dimidiate pixel method based on satellite imagery; second, the UAS imagery for few typical areas was used to predict the FVC of the large-scale area, thereby providing fine-scale vegetation information; third, the MSFP achieved high accuracy and long-term FVC monitoring by interyear calibration of VI calculated from Landsat data. This article paves the way toward accurate long-term monitoring of regional FVC. The demonstrated methodological framework is simple and operable, thereby opening the prospects for its applications in other environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ml完成签到 ,获得积分10
1秒前
1秒前
我独舞完成签到 ,获得积分10
2秒前
zw完成签到 ,获得积分10
3秒前
YeeLeeLee完成签到,获得积分10
4秒前
活泼的碧灵完成签到 ,获得积分10
6秒前
不吃香菜完成签到,获得积分10
7秒前
danli完成签到 ,获得积分10
7秒前
嘿嘿应助wwl采纳,获得10
9秒前
多余完成签到,获得积分10
9秒前
五本笔记完成签到 ,获得积分10
10秒前
哈哈镜阿姐完成签到,获得积分10
10秒前
aspirin完成签到 ,获得积分10
12秒前
大神水瓶座完成签到,获得积分10
13秒前
LWJ要毕业完成签到 ,获得积分10
13秒前
13秒前
Ch_7完成签到,获得积分10
14秒前
15秒前
1117完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
22秒前
may完成签到 ,获得积分10
23秒前
asd1576562308完成签到 ,获得积分10
24秒前
Camellia完成签到 ,获得积分10
24秒前
不过尔尔完成签到 ,获得积分10
24秒前
24秒前
橘子味完成签到 ,获得积分10
27秒前
neu_zxy1991完成签到,获得积分10
28秒前
MUAN完成签到 ,获得积分10
28秒前
蜗爱学习完成签到 ,获得积分10
29秒前
sweet雪儿妞妞完成签到 ,获得积分10
30秒前
远之完成签到 ,获得积分10
32秒前
月星完成签到,获得积分10
36秒前
CasterL完成签到,获得积分10
38秒前
123完成签到,获得积分10
39秒前
阳光的音响关注了科研通微信公众号
44秒前
等风来完成签到 ,获得积分10
44秒前
可靠的一手完成签到 ,获得积分10
45秒前
46秒前
陈麦完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086