特征向量
数学
分叉
稳态(化学)
不稳定性
简单(哲学)
渗透(HVAC)
参数空间
应用数学
先验与后验
理论(学习稳定性)
数学分析
分岔理论
控制理论(社会学)
非线性系统
几何学
计算机科学
物理
机械
气象学
哲学
化学
控制(管理)
物理化学
认识论
量子力学
机器学习
人工智能
作者
Gaihui Guo,Shihan Zhao,Jingjing Wang,Yuanxiao Gao
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-06-02
卷期号:29 (1): 426-458
被引量:10
标识
DOI:10.3934/dcdsb.2023101
摘要
In this paper, a water-vegetation model with the infiltration feedback effect is considered. Firstly, through the linear stability analysis, we get the parameter area where Turing instability can occur. Next, by maximum principle, a priori estimates for positive steady-state solutions are obtained and sufficient conditions for the nonexistence of nonconstant positive steady-state solution are given. Moreover, the steady-state bifurcations at both simple and double eigenvalues are analyzed separately. We establish the global structure of the bifurcation from simple eigenvalues and get the sufficient condition to determine the bifurcation direction. For the case of double eigenvalues, the techniques of space decomposition and the implicit function theorem are used. Finally, we verify and supplement the theoretical analysis results with numerical simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI