A cellular automata model for dynamically describing the overland flow and sediment transport

地表径流 腐蚀 细沟 流量(数学) 水文学(农业) 沉积物 泥沙输移 土壤科学 均方误差 地质学 细胞自动机 环境科学 构造盆地 岩土工程 数学 地貌学 几何学 统计 算法 生态学 生物
作者
Tao Zhang,Ailan Che
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:623: 129789-129789
标识
DOI:10.1016/j.jhydrol.2023.129789
摘要

Rainfall erosion has been calculated and predicted by various soil loss equations, but the progressions of overland flow and sediment transport are less dynamically described. In this study, cellular automata (CA) models based on single flow direction algorithm (SFD), average value multi-flow direction algorithm (AMFD) and remaining average value multi-flow direction algorithm (RAMFD) were constructed. Simultaneously, erosion model was constructed by dividing soil erosion into inter-rill, rill and gully erosions according to critical water depth. The CA models were validated at three scales: a theoretical slope, an in-situ model slope and the natural basin. The results demonstrated the efficient performance of RAMFD in the runoff ascension and recession stages while SFD and AMFD presented unconcentrated runoff distribution, especially in the in-situ slope and basin simulation. Besides, RAMFD model occurred sediment deposition in the basin upstream while SFD and AMFD presented continuous erosion. Furthermore, the runoff Nash-Sutcliffe efficiency (NSE) of three models were 0.85 ∼ 0.95 and 0.65 ∼ 0.94, and the erosion root mean square error (RMSE) were 0.5 ∼ 1.0 kg/min and 0.3 ∼ 0.45 102kg/min in the theoretical slope and natural basin, respectively. Meanwhile, the NSE and RMSE values of RAMFD exhibited the best performance, indicating that this model effectively balanced water distribution while controlling the flow direction to a greater extent. Overall, it is justified to develop an erosion prediction model based on the classification of erosion types, and the rules governing water flow allocation will inevitably result in qualitative and quantitative differences of runoff and erosion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助boogie采纳,获得10
刚刚
47完成签到,获得积分10
1秒前
山海流完成签到,获得积分10
1秒前
叶子宁完成签到,获得积分10
1秒前
narall发布了新的文献求助10
2秒前
友好寻琴完成签到 ,获得积分10
2秒前
兴奋的香芦完成签到,获得积分10
2秒前
2秒前
hhy关注了科研通微信公众号
2秒前
2秒前
Shaylee发布了新的文献求助10
2秒前
2秒前
Eurus发布了新的文献求助30
3秒前
玉米浓汤发布了新的文献求助10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
庸人自扰发布了新的文献求助10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
罗霄山完成签到,获得积分10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
5秒前
Someone应助科研通管家采纳,获得10
5秒前
小松完成签到,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
领导范儿应助DYY采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
liu发布了新的文献求助30
5秒前
Excalibur应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
SciGPT应助科研通管家采纳,获得20
5秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782