A cellular automata model for dynamically describing the overland flow and sediment transport

地表径流 腐蚀 细沟 流量(数学) 水文学(农业) 沉积物 泥沙输移 土壤科学 均方误差 地质学 细胞自动机 环境科学 构造盆地 岩土工程 数学 地貌学 几何学 统计 算法 生态学 生物
作者
Tao Zhang,Ailan Che
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:623: 129789-129789
标识
DOI:10.1016/j.jhydrol.2023.129789
摘要

Rainfall erosion has been calculated and predicted by various soil loss equations, but the progressions of overland flow and sediment transport are less dynamically described. In this study, cellular automata (CA) models based on single flow direction algorithm (SFD), average value multi-flow direction algorithm (AMFD) and remaining average value multi-flow direction algorithm (RAMFD) were constructed. Simultaneously, erosion model was constructed by dividing soil erosion into inter-rill, rill and gully erosions according to critical water depth. The CA models were validated at three scales: a theoretical slope, an in-situ model slope and the natural basin. The results demonstrated the efficient performance of RAMFD in the runoff ascension and recession stages while SFD and AMFD presented unconcentrated runoff distribution, especially in the in-situ slope and basin simulation. Besides, RAMFD model occurred sediment deposition in the basin upstream while SFD and AMFD presented continuous erosion. Furthermore, the runoff Nash-Sutcliffe efficiency (NSE) of three models were 0.85 ∼ 0.95 and 0.65 ∼ 0.94, and the erosion root mean square error (RMSE) were 0.5 ∼ 1.0 kg/min and 0.3 ∼ 0.45 102kg/min in the theoretical slope and natural basin, respectively. Meanwhile, the NSE and RMSE values of RAMFD exhibited the best performance, indicating that this model effectively balanced water distribution while controlling the flow direction to a greater extent. Overall, it is justified to develop an erosion prediction model based on the classification of erosion types, and the rules governing water flow allocation will inevitably result in qualitative and quantitative differences of runoff and erosion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助满意语风采纳,获得10
1秒前
1秒前
阿槿完成签到,获得积分20
1秒前
科研通AI2S应助霸气的诗兰采纳,获得10
2秒前
JamesPei应助霸气的诗兰采纳,获得10
2秒前
zz发布了新的文献求助30
2秒前
想不出来完成签到 ,获得积分10
3秒前
我是老大应助dongan采纳,获得10
3秒前
518发布了新的文献求助50
4秒前
UP发布了新的文献求助10
4秒前
Hades发布了新的文献求助30
5秒前
xiaoxiao发布了新的文献求助10
5秒前
5秒前
5秒前
朴实的念双完成签到,获得积分10
6秒前
James发布了新的文献求助10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
heyihao应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
科研助手6应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
turquoise应助科研通管家采纳,获得20
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Ren应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
青柠大大应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得40
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070