自愈水凝胶
共价键
生物相容性
自愈
药物输送
材料科学
化学工程
动态共价化学
亚胺
纳米技术
化学
生物医学工程
高分子化学
有机化学
分子
病理
催化作用
工程类
超分子化学
替代医学
医学
作者
Feixue Sun,Qi Yao,Yi‐Ting Wang,Jiemin Lou,Qiang Li,Qian Tao,Guiying Li
摘要
Abstract Hydrogels based on dynamic covalent bonds have unique properties and are competent in many biomedical fields. However, critical issues such as biocompatibility, mechanical properties, and stimulus responsiveness are required to be solved. It is also expected to develop a simple preparation method with mild conditions. Based on these objectives, chitosan (CS), sodium alginate (SA) and 2‐formylphenylboronic acid (2‐FPBA) are used to prepare the dynamic covalent bond hydrogels within minutes neither chemical medications nor severe conditions. Benefiting from the imine borate and boronic ester bonds both formed in the hydrogels, the hydrogels are stable, injectable, and of efficient self‐healing properties. The damage‐recovery process can be repeated for more than 6 cycles. The microstructure of the hydrogels recoded by atomic force microscopy (AFM) is consistent with the mechanical properties and both of them could be affected by the concentrations of SA and 2‐FPBA. Moreover, the dynamic hydrogels are responsive to pH values and oxidative environment. When the model drug 5‐fluorouracil (5‐FU) is loaded in the dynamic hydrogels, the release profiles are sustainable and present significant differences with various stimuli. These dynamic covalent bond hydrogels have a promising prospect in tissue engineering and drug delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI