亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based quantification of epicardial adipose tissue volume in cardiac magnetic resonace predicts major adverse cardiovascular events in patients with known or suspected CAD

医学 狼牙棒 射血分数 冠状动脉疾病 心脏病学 稳态自由进动成像 内科学 心肌梗塞 人口 磁共振成像 心脏磁共振成像 体质指数 冲程容积 放射科 心力衰竭 经皮冠状动脉介入治疗 环境卫生
作者
Marco Guglielmo,Marco Penso,Maria Ludovica Carerj,Carlo Maria Giacari,Laura Fusini,Andrea Baggiano,Saima Mushtaq,Fabio Fazzari,Andrea Annoni,Andrea Igoren Guaricci,Ivo van der Bilt,Pim van der Harst,Mauro Pepi,Enrico G. Caiani,Gianluca Pontone
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:24 (Supplement_1)
标识
DOI:10.1093/ehjci/jead119.038
摘要

Abstract Funding Acknowledgements Type of funding sources: None. Background Increased epicardial adipose tissue (EAT) volume quantified with cardiac magnetic resonance (CMR) has been associated with the development of major adverse cardiac events (MACE). We sought to investigate the additional prognostic role EAT volume in patients with known or suspected coronary artery disease (CAD) undergoing CMR imaging. Methods 702 consecutive patients (age: 63±10 y, male 84%) with known or suspected CAD underwent clinically indicated CMR. Using a new DL algorithm, EAT volume was quantified on short-axis stack steady state free precession (SSFP) images. Firstly, a training set of 300 patients with manually traced EAT (ground truth) was randomly split (patient-wise) into development (n=240, 80%) and held-out testing (n=60, 20%) cohorts. Secondly, we applied our segmentation network on a validation set of 402 patients with unlabeled data for automated EAT segmentations. Finally, we applied the algorith to the entire population (702 patients) to quantify EAT. EAT volume, normalized for the body mass index (EAT index), was compared to standard clinical and imaging variables for the prediction of MACE defined as non-fatal myocardial infarction and cardiac deaths. Results 52 patients (7.4%) developed MACE during a follow-up of 5.8±1.2 years. Left ventricular ejection fraction (LVEF) < 50% (HR 2.271 [95% CI 1.117–4.616]), p = 0.023, late gadolinium enhancement (LGE) presence (HR 2.456 [95% CI 1.077–5.602]), p = 0.033 and EAT index ≥ 1,8 (HR 6.187 [95% CI 1.879–20.372]), p = 0.003 were independent predictors of MACE. Adding EAT index in a model including LVEF and LGE provided a significant improvement in predicting the endpoint with a Harrell C statistic of 0.75. Conclusions In patients with known or suspected CAD undergoing CMR, fully automated EAT volume quantification provides additional prognostic information on top of standard clinical and imaging parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助RLOO采纳,获得10
刚刚
8秒前
8秒前
剑八发布了新的文献求助10
13秒前
崔崔发布了新的文献求助10
14秒前
852应助fanfan采纳,获得10
21秒前
我是老大应助剑八采纳,获得10
23秒前
星辰大海应助Watsun采纳,获得10
23秒前
Sunny完成签到 ,获得积分10
30秒前
惠娥发布了新的文献求助10
33秒前
36秒前
辛勤奇迹完成签到,获得积分20
39秒前
乐乐应助srf0602.采纳,获得10
39秒前
WANG.发布了新的文献求助10
41秒前
英俊的铭应助yyds采纳,获得10
42秒前
45秒前
45秒前
47秒前
Watsun完成签到,获得积分10
49秒前
yuhanz完成签到 ,获得积分10
51秒前
srf0602.发布了新的文献求助10
51秒前
WANG.完成签到,获得积分10
52秒前
Watsun发布了新的文献求助10
53秒前
bkagyin应助WUHUDASM采纳,获得10
53秒前
56秒前
Jasper应助傲娇的蛋挞采纳,获得10
59秒前
1分钟前
Akim应助dy采纳,获得10
1分钟前
剑八发布了新的文献求助10
1分钟前
yyds发布了新的文献求助10
1分钟前
1分钟前
波波完成签到 ,获得积分10
1分钟前
srf0602.完成签到,获得积分10
1分钟前
1分钟前
慕青应助活力的冷雪采纳,获得30
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
八二力发布了新的文献求助10
1分钟前
Blast完成签到,获得积分20
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526498
求助须知:如何正确求助?哪些是违规求助? 3106931
关于积分的说明 9281903
捐赠科研通 2804438
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709554