Localized Electron Density Regulation Effect for Promoting Solid–Liquid Ion Adsorption to Enhance Areal Capacitance of Micro‐Supercapacitors

材料科学 超级电容器 假电容 电容 石墨烯 化学物理 离子 纳米技术 电荷密度 电解质 吸附 碳纳米管 化学工程 光电子学 电极 化学 物理化学 有机化学 工程类 物理 量子力学
作者
Zhiwei Zhao,Zixi Wang,Ying-Song Yu,Yi Hu
出处
期刊:Small [Wiley]
卷期号:19 (41) 被引量:5
标识
DOI:10.1002/smll.202302489
摘要

The development of flexible microelectronic systems requires the construction of high-energy-output planar micro-supercapacitors (MSCs). Herein, the localized electron density, by introducing graphene quantum dots (GQDs) on the surface of electrodes, is regulated. The enhanced local field intensity promotes ion electrostatic adsorption at the solid-liquid interface, which significantly improves the energy density of MSCs in the confined space. Local electronic structure has been investigated from the perspective of the topological analysis of the electron localization function (ELF) and the electron density. Impressively, the edges of the simulated structure exhibit a higher electron density distribution than the CC skeleton. This finding indicates that the introduced GQDs reinforce the intrinsic electrical double-layer capacitance (EDLC) and the oxygen-bearing functional groups at the edge, further increasing the pseudocapacitance performance. Moreover, the edge electron aggregation effect enables the all-carbon-based symmetric MSCs to exhibit ultra-high areal capacitance (21.78 mF cm-2 ) and excellent cycle stability (86.74% retention after 25 000 cycles). This novel surface local charge regulation strategy is also applied for intensifying ion electrostatic adsorption on Zn-ion hybrid MSCs (polyvalent metal ions) and ion-gel electrolyte MSCs (non-metallic ions). With excellent planar integration, this device demonstrates excellent flexibility and has potential applications in timing and environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chengzugen发布了新的文献求助10
刚刚
刚刚
何必在乎发布了新的文献求助10
3秒前
ph完成签到,获得积分10
4秒前
微笑立轩发布了新的文献求助10
5秒前
过儿发布了新的文献求助10
6秒前
啦啦啦啦啦完成签到 ,获得积分10
7秒前
wanghaha完成签到,获得积分20
8秒前
8秒前
9秒前
无花果应助gs采纳,获得10
10秒前
天天快乐应助ff采纳,获得10
11秒前
cooper完成签到,获得积分20
12秒前
12秒前
Owen应助杨德帅采纳,获得10
12秒前
张楚岚完成签到,获得积分10
12秒前
W_x完成签到 ,获得积分10
12秒前
隐形曼青应助何必在乎采纳,获得10
13秒前
美少叔叔完成签到 ,获得积分10
14秒前
pipixia完成签到,获得积分10
14秒前
淡淡尔烟发布了新的文献求助10
15秒前
隐形曼青应助杨德帅采纳,获得10
15秒前
15秒前
Ce发布了新的文献求助10
15秒前
16秒前
脑洞疼应助过儿采纳,获得10
16秒前
cc发布了新的文献求助10
18秒前
18秒前
18秒前
宗友绿发布了新的文献求助20
18秒前
Jasper应助杨德帅采纳,获得10
19秒前
星辰大海应助zoey采纳,获得10
20秒前
科目三应助魔幻的枫叶采纳,获得10
21秒前
师德发布了新的文献求助10
21秒前
勤恳元枫发布了新的文献求助10
22秒前
22秒前
23秒前
邵垒发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680518
求助须知:如何正确求助?哪些是违规求助? 4999851
关于积分的说明 15173281
捐赠科研通 4840442
什么是DOI,文献DOI怎么找? 2594093
邀请新用户注册赠送积分活动 1547105
关于科研通互助平台的介绍 1505090