Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction

尖晶石 材料科学 阳极 电化学 高熵合金 化学工程 固溶体 电极 纳米技术 微观结构 冶金 物理化学 化学 工程类
作者
Chen Liu,Jianqiang Bi,Lulin Xie,Xicheng Gao,Linjie Meng
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 106315-106315 被引量:13
标识
DOI:10.1016/j.mtcomm.2023.106315
摘要

High entropy oxides (HEOs), a novel class of single-phase inorganic materials with high specific capacity, excellent cycling performance, high structural stability, and super-electronic conductivity, exhibit a wide range of useful properties. It is believed that there is one of the most promising anode materials for lithium-ion batteries (LIBs). Being able to create new electrode materials using an infinite number of elemental combinations thanks to the HEO's distinctive adjustable chemical composition characteristics is advantageous. Herein, two varieties of high entropy spinel oxides, (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state sintering method, and their material characterization and electrochemical properties were investigated respectively. The outcomes of the experiment demonstrate that the particle size distribution of the two samples is uniform. In the electrochemical test, the capacity is unaffected after 800 cycles at the current density of 1000 mA·g−1, and the two powders exhibit excellent cycle stability and magnification performance. Due to the abundant oxygen vacancies, quick three-dimensional Li+ transport path, and entropy stabilization effect of the spinel structure, all HESOs exhibit exceptional cycle stability and rate capability when serving as the anode of LIBs. The next generation of high-performance lithium-ion battery anode materials may gain from the logical design of high-entropy oxides with a variety of electrochemically active elements and novel structures, according to this research, which proposes a novel method for producing high-entropy energy storage materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllllll发布了新的文献求助10
刚刚
634301059完成签到 ,获得积分10
刚刚
3秒前
5秒前
小确幸发布了新的文献求助10
6秒前
6秒前
7秒前
Owen应助lllllll采纳,获得10
9秒前
blue2021发布了新的文献求助10
11秒前
嘒彼小星完成签到 ,获得积分10
12秒前
海洋完成签到,获得积分10
18秒前
19秒前
孤海未蓝完成签到,获得积分10
19秒前
博修发布了新的文献求助10
20秒前
20秒前
21秒前
搜集达人应助谢家宝树采纳,获得10
21秒前
子车谷波发布了新的文献求助10
23秒前
23秒前
莓莓MM完成签到 ,获得积分10
23秒前
王灿灿应助zhaomr采纳,获得10
26秒前
hmhu发布了新的文献求助10
27秒前
30秒前
单薄惜文应助小确幸采纳,获得10
30秒前
今后应助town1223采纳,获得10
31秒前
何文军完成签到,获得积分10
31秒前
爱打球的小蔡鸡完成签到,获得积分10
32秒前
32秒前
wangjing应助123采纳,获得10
34秒前
小羊发布了新的文献求助10
35秒前
务实小鸽子完成签到 ,获得积分10
35秒前
子车谷波完成签到,获得积分10
35秒前
小确幸完成签到,获得积分10
36秒前
39秒前
陈晚拧完成签到 ,获得积分10
39秒前
39秒前
科研通AI2S应助zhaomr采纳,获得10
39秒前
酷波er应助ardejiang采纳,获得10
41秒前
怜梦完成签到,获得积分10
41秒前
chen完成签到,获得积分20
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242492
求助须知:如何正确求助?哪些是违规求助? 2886874
关于积分的说明 8245034
捐赠科研通 2555371
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625554