Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction

尖晶石 材料科学 阳极 电化学 高熵合金 化学工程 固溶体 电极 纳米技术 微观结构 冶金 物理化学 化学 工程类
作者
Chen Liu,Jianqiang Bi,Lulin Xie,Xicheng Gao,Linjie Meng
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 106315-106315 被引量:13
标识
DOI:10.1016/j.mtcomm.2023.106315
摘要

High entropy oxides (HEOs), a novel class of single-phase inorganic materials with high specific capacity, excellent cycling performance, high structural stability, and super-electronic conductivity, exhibit a wide range of useful properties. It is believed that there is one of the most promising anode materials for lithium-ion batteries (LIBs). Being able to create new electrode materials using an infinite number of elemental combinations thanks to the HEO's distinctive adjustable chemical composition characteristics is advantageous. Herein, two varieties of high entropy spinel oxides, (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state sintering method, and their material characterization and electrochemical properties were investigated respectively. The outcomes of the experiment demonstrate that the particle size distribution of the two samples is uniform. In the electrochemical test, the capacity is unaffected after 800 cycles at the current density of 1000 mA·g−1, and the two powders exhibit excellent cycle stability and magnification performance. Due to the abundant oxygen vacancies, quick three-dimensional Li+ transport path, and entropy stabilization effect of the spinel structure, all HESOs exhibit exceptional cycle stability and rate capability when serving as the anode of LIBs. The next generation of high-performance lithium-ion battery anode materials may gain from the logical design of high-entropy oxides with a variety of electrochemically active elements and novel structures, according to this research, which proposes a novel method for producing high-entropy energy storage materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助呆呆要努力采纳,获得10
1秒前
1秒前
2秒前
魔幻灵竹完成签到,获得积分10
2秒前
想你的1完成签到 ,获得积分10
3秒前
小薇完成签到,获得积分10
3秒前
4秒前
lynn完成签到 ,获得积分10
4秒前
5秒前
liu发布了新的文献求助10
5秒前
5秒前
6秒前
研友_VZG7GZ应助pangboo采纳,获得10
6秒前
研友_VZG7GZ应助可达鸭采纳,获得10
7秒前
8秒前
8秒前
9秒前
明理文龙完成签到,获得积分20
9秒前
鲸鱼发布了新的文献求助10
10秒前
蜀黍完成签到,获得积分10
10秒前
灵犀完成签到 ,获得积分10
10秒前
10秒前
lulu发布了新的文献求助10
11秒前
11秒前
Orange应助科研不懂12采纳,获得10
12秒前
帅气凝云发布了新的文献求助10
12秒前
光亮之桃发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
研友_nEW4G8发布了新的文献求助10
14秒前
15秒前
wsl_csu发布了新的文献求助30
16秒前
orixero应助帅气凝云采纳,获得10
17秒前
17秒前
xuxingjie发布了新的文献求助10
18秒前
dique3hao完成签到 ,获得积分10
21秒前
whocare发布了新的文献求助10
22秒前
jiaqiLi发布了新的文献求助10
22秒前
23秒前
在水一方应助lianhe采纳,获得10
24秒前
fh完成签到 ,获得积分10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981