已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ResNet and its application to medical image processing: Research progress and challenges

计算机科学 残余物 人工神经网络 残差神经网络 领域(数学) 深度学习 人工智能 图像处理 乳腺癌 机器学习 数据科学 医学 癌症 图像(数学) 算法 数学 内科学 纯数学
作者
Wanni Xu,You-Lei Fu,Dongmei Zhu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107660-107660 被引量:268
标识
DOI:10.1016/j.cmpb.2023.107660
摘要

Deep learning, a novel approach and subset of machine learning, has drawn a growing amount of attention from computer vision researchers in recent years. This method has drawn a lot of interest because of its extraordinary ability to interpret medical pictures, especially when combined with residual neural networks, which have helped to progress the field.In this paper, the following research is carried out on the residual network. First, the research status of ResNet in the medical field is introduced. The fundamental idea behind the residual neural network is then explained, along with the residual unit, its many structures, and the network architecture. Second, four aspects of the widespread use of residual neural networks in medical image processing are discussed: lung tumor, diagnosis of skin diseases, diagnosis of breast diseases, and diagnosis of diseases of the brain. Finally, the main issues and ResNet's future development in the area of processing medical images are discussed.In the area of medical graph processing, residual neural networks have made strides and have had success in the clinical auxiliary diagnosis of serious illnesses such as lung tumors, breast cancer, skin conditions, and cardiovascular and cerebrovascular diseases.We thoroughly sorted out the most recent developments in residual neural network research and their use in medical image processing, which serves as a crucial point of reference for this field of study. It offers a helpful reference for further promoting the application and research of the ResNet model in the field of medical image processing by summarising the application status and issues of the ResNet model in the field of medical image processing and putting forwards some future development directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小张完成签到 ,获得积分10
刚刚
小周发布了新的文献求助10
刚刚
claud完成签到 ,获得积分10
1秒前
仲夏夜之梦完成签到,获得积分10
2秒前
4秒前
四玖玖发布了新的文献求助10
5秒前
cnspower发布了新的文献求助100
5秒前
深情安青应助能干寒松采纳,获得10
7秒前
涛涛完成签到,获得积分20
7秒前
潇洒荷花完成签到 ,获得积分10
7秒前
脆啵啵马克宝完成签到 ,获得积分10
8秒前
单调的蜜蜂完成签到,获得积分10
8秒前
久桃发布了新的文献求助10
11秒前
ya发布了新的文献求助200
12秒前
16秒前
能干寒松完成签到,获得积分10
16秒前
Cc完成签到 ,获得积分10
17秒前
18秒前
19秒前
久桃完成签到,获得积分10
20秒前
22秒前
23秒前
24秒前
25秒前
四玖玖完成签到,获得积分10
26秒前
充电宝应助liu采纳,获得10
27秒前
刘111完成签到,获得积分10
31秒前
桃桃子发布了新的文献求助10
32秒前
ya完成签到,获得积分10
35秒前
xingsixs完成签到 ,获得积分10
37秒前
ruru发布了新的文献求助10
37秒前
抚琴祛魅完成签到 ,获得积分10
41秒前
41秒前
蓝色天空完成签到,获得积分10
43秒前
桃桃子完成签到,获得积分10
45秒前
45秒前
49秒前
风月难安发布了新的文献求助10
49秒前
孤芳自赏IrisKing完成签到 ,获得积分10
51秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424