ResNet and its application to medical image processing: Research progress and challenges

计算机科学 残余物 人工神经网络 残差神经网络 领域(数学) 深度学习 人工智能 图像处理 乳腺癌 机器学习 数据科学 医学 癌症 图像(数学) 算法 内科学 数学 纯数学
作者
Wanni Xu,You-Lei Fu,Dongmei Zhu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107660-107660 被引量:120
标识
DOI:10.1016/j.cmpb.2023.107660
摘要

Deep learning, a novel approach and subset of machine learning, has drawn a growing amount of attention from computer vision researchers in recent years. This method has drawn a lot of interest because of its extraordinary ability to interpret medical pictures, especially when combined with residual neural networks, which have helped to progress the field.In this paper, the following research is carried out on the residual network. First, the research status of ResNet in the medical field is introduced. The fundamental idea behind the residual neural network is then explained, along with the residual unit, its many structures, and the network architecture. Second, four aspects of the widespread use of residual neural networks in medical image processing are discussed: lung tumor, diagnosis of skin diseases, diagnosis of breast diseases, and diagnosis of diseases of the brain. Finally, the main issues and ResNet's future development in the area of processing medical images are discussed.In the area of medical graph processing, residual neural networks have made strides and have had success in the clinical auxiliary diagnosis of serious illnesses such as lung tumors, breast cancer, skin conditions, and cardiovascular and cerebrovascular diseases.We thoroughly sorted out the most recent developments in residual neural network research and their use in medical image processing, which serves as a crucial point of reference for this field of study. It offers a helpful reference for further promoting the application and research of the ResNet model in the field of medical image processing by summarising the application status and issues of the ResNet model in the field of medical image processing and putting forwards some future development directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神秘人w发布了新的文献求助10
刚刚
刚刚
jhcdgszjdcb发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
SYLH应助温暖的碧彤采纳,获得10
2秒前
烟花应助不站在雾里采纳,获得10
2秒前
涵Allen完成签到,获得积分10
3秒前
3秒前
猴子好坏完成签到,获得积分10
3秒前
共享精神应助谈理想采纳,获得10
5秒前
紫金之恋完成签到,获得积分10
5秒前
幽默泥猴桃完成签到,获得积分10
5秒前
小蘑菇应助不攻自破采纳,获得10
5秒前
5秒前
xinxin完成签到,获得积分10
5秒前
猪小呆发布了新的文献求助10
6秒前
背后丹妗发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
1111应助xzx采纳,获得10
7秒前
Lucas应助xzx采纳,获得10
7秒前
7秒前
9秒前
jesi完成签到,获得积分10
9秒前
顾矜应助回忆里的疯狂采纳,获得10
9秒前
9秒前
张小斌发布了新的文献求助10
10秒前
spiritpope完成签到,获得积分10
10秒前
Betty发布了新的文献求助10
11秒前
11秒前
xinxin发布了新的文献求助10
12秒前
Jasper应助Sinner采纳,获得10
12秒前
火柴完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
ZY完成签到 ,获得积分10
13秒前
yu发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271