Prediction of the buckling mode of cylindrical composite shells with imperfections using FEM-based deep learning approach

屈曲 有限元法 Python(编程语言) 人工神经网络 结构工程 复合数 深度学习 模式(计算机接口) 材料科学 计算机科学 复合材料 人工智能 工程类 操作系统
作者
Ruihai Xin,Vinh Tung Le,Nam Seo Goo
出处
期刊:Advanced Composite Materials [Informa]
卷期号:33 (2): 189-211 被引量:2
标识
DOI:10.1080/09243046.2023.2224129
摘要

AbstractThis study introduces a new method for predicting buckling modes in cylindrical composite shells using a deep learning approach based on finite element method (FEM). The study used carbon fiber woven prepreg material and collected 520 data sets through an Abaqus-Python program. A deep neural network was trained using FEM results to accurately predict the buckling mode of cylindrical composite shells with imperfections. The study employed a generative adversarial network and the pix2pix deep learning algorithm in the prediction process. The deep learning model achieved a similar level of prediction accuracy as traditional FEM, but was much more efficient. The study also utilized logistic regression to examine the relationship between input variables and buckling modes. The research shows the potential of the FEM-based deep learning approach to improve the efficiency of buckling mode prediction in cylindrical composite shells, which is critical for their design and safety.Keywords: Cylindrical composite shellimperfectionsfinite element analysisdeep learning: generative adversarial network AcknowledgementsThis research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A2055690). This paper was also supported by Konkuk University Researcher Fund in 2022. The authors are grateful for the financial support.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Research Foundation of Korea [NRF-2022R1I1A2055690]. This paper was also supported by Konkuk University Researcher Fund in 2022.Correction StatementThis article has been republished with minor changes. These changes do not impact the academic content of the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Jonathan采纳,获得10
刚刚
深情安青应助盼盼采纳,获得10
刚刚
粥粥发布了新的文献求助10
1秒前
3秒前
张张张发布了新的文献求助10
3秒前
3秒前
今后应助轻松小蜜蜂采纳,获得10
4秒前
科研通AI5应助xuxu采纳,获得20
5秒前
周周完成签到,获得积分10
5秒前
5秒前
6秒前
pigff发布了新的文献求助10
8秒前
LL发布了新的文献求助10
8秒前
粥粥完成签到,获得积分10
8秒前
SMLW完成签到 ,获得积分10
8秒前
小马甲应助wing采纳,获得10
8秒前
9秒前
长矛沾屎戳谁谁死完成签到,获得积分10
9秒前
10秒前
小二郎应助Chun采纳,获得30
11秒前
Hungrylunch应助zorro3574采纳,获得10
11秒前
11秒前
烂漫驳发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
15秒前
阳哥发布了新的文献求助10
15秒前
Zhai发布了新的文献求助10
15秒前
大个应助mmmmm采纳,获得10
16秒前
哎呦天松完成签到,获得积分0
16秒前
16秒前
Wednesday Chong完成签到 ,获得积分10
17秒前
17秒前
BZPL发布了新的文献求助10
18秒前
cocolu应助YLS采纳,获得10
18秒前
ytx发布了新的文献求助10
20秒前
20秒前
wing发布了新的文献求助10
20秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490684
求助须知:如何正确求助?哪些是违规求助? 3077465
关于积分的说明 9148997
捐赠科研通 2769686
什么是DOI,文献DOI怎么找? 1519873
邀请新用户注册赠送积分活动 704375
科研通“疑难数据库(出版商)”最低求助积分说明 702135