Multi-Agent Reinforcement Learning Based File Caching Strategy in Mobile Edge Computing

强化学习 计算机科学 GSM演进的增强数据速率 边缘计算 分布式计算 移动代理 操作系统 人机交互 人工智能
作者
Yongjian Yang,Kaihao Lou,En Wang,Wenbin Liu,Jianwen Shang,Xueting Song,Dawei Li,Jie Wu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 3159-3174 被引量:11
标识
DOI:10.1109/tnet.2023.3278032
摘要

Mobile edge computing (MEC) reduces data service latency by pushing data to the network edge. However, due to the dynamic and diverse requests of mobile users, the problem of mobile edge caching is more complex than cloud caching. Therefore, the existing model-based caching strategies cannot be directly used in the mobile edge caching environment. Besides, when taking the cooperative storage relationship between neighbor edge servers into consideration, the caching problem becomes more difficult. To this end, we formulate an mobile edge caching problem to minimize the total latency in mobile edge computing. Firstly, a heuristic caching strategy is proposed to solve the mobile edge caching problem in the single-time-slot scenario. Then, with the consideration of users' mobility and the correlation of files, we propose a caching strategy for the multiple-time-slot scenario based on multi-agent deep reinforcement learning. To address the cold start problem in deep reinforcement learning, we adopt the proposed heuristic caching strategy used in the single-time-slot scenario to further optimize the training results. Extensive experiments on generated data and real-world datasets are conducted to verify that the proposed edge caching strategies can achieve the minimum latency compared with the state-of-the-art strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yiling发布了新的文献求助10
刚刚
寻悦发布了新的文献求助10
刚刚
小蘑菇应助逍遥自在采纳,获得10
2秒前
2秒前
cheng发布了新的文献求助10
2秒前
小鱼儿发布了新的文献求助30
3秒前
wangxuan完成签到,获得积分10
3秒前
budingman发布了新的文献求助20
3秒前
洪洪发布了新的文献求助10
4秒前
4秒前
4秒前
LL完成签到,获得积分10
4秒前
Hayat应助feifei采纳,获得10
4秒前
模拟洗涤剂完成签到 ,获得积分10
5秒前
复杂完成签到,获得积分20
6秒前
6秒前
瓜兮兮CYY发布了新的文献求助10
6秒前
小蘑菇应助从容安柏采纳,获得10
7秒前
8秒前
xx发布了新的文献求助10
9秒前
标致小翠发布了新的文献求助10
10秒前
10秒前
vetXue完成签到,获得积分10
10秒前
追寻冰淇淋应助69采纳,获得20
11秒前
12秒前
13秒前
14秒前
cheng完成签到,获得积分10
14秒前
15秒前
qdd发布了新的文献求助10
16秒前
16秒前
16秒前
orixero应助陈龙采纳,获得30
16秒前
SYLH应助budingman采纳,获得20
16秒前
发阿发完成签到,获得积分10
16秒前
18秒前
19秒前
清爽乐菱应助LiShin采纳,获得10
20秒前
aaa发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403