亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for automated and real-time two-dimensional to three-dimensional registration of the spine using a single radiograph

射线照相术 计算机科学 人工智能 计算机视觉 体素 计算 图像配准 体积热力学 算法 公制(单位) 相似性(几何) 图像(数学) 医学 放射科 物理 经济 量子力学 运营管理
作者
Andrew Abumoussa,Vivek Gopalakrishnan,Benjamin Succop,Michael Galgano,Sivakumar Jaikumar,Yueh Z. Lee,Deb A. Bhowmick
出处
期刊:Neurosurgical Focus [American Association of Neurological Surgeons]
卷期号:54 (6): E16-E16 被引量:2
标识
DOI:10.3171/2023.3.focus2345
摘要

The goal of this work was to methodically evaluate, optimize, and validate a self-supervised machine learning algorithm capable of real-time automatic registration and fluoroscopic localization of the spine using a single radiograph or fluoroscopic frame.The authors propose a two-dimensional to three-dimensional (2D-3D) registration algorithm that maximizes an image similarity metric between radiographic images to identify the position of a C-arm relative to a 3D volume. This work utilizes digitally reconstructed radiographs (DRRs), which are synthetic radiographic images generated by simulating the x-ray projections as they would pass through a CT volume. To evaluate the algorithm, the authors used cone-beam CT data for 127 patients obtained from an open-source de-identified registry of cervical, thoracic, and lumbar scans. They systematically evaluated and tuned the algorithm, then quantified the convergence rate of the model by simulating C-arm registrations with 80 randomly simulated DRRs for each CT volume. The endpoints of this study were time to convergence, accuracy of convergence for each of the C-arm's degrees of freedom, and overall registration accuracy based on a voxel-by-voxel measurement.A total of 10,160 unique radiographic images were simulated from 127 CT scans. The algorithm successfully converged to the correct solution 82% of the time with an average of 1.96 seconds of computation. The radiographic images for which the algorithm converged to the solution demonstrated 99.9% registration accuracy despite utilizing only single-precision computation for speed. The algorithm was found to be optimized for convergence when the search space was limited to a ± 45° offset in the right anterior oblique/left anterior oblique, cranial/caudal, and receiver rotation angles with the radiographic isocenter contained within 8000 cm3 of the volumetric center of the CT volume.The investigated machine learning algorithm has the potential to aid surgeons in level localization, surgical planning, and intraoperative navigation through a completely automated 2D-3D registration process. Future work will focus on algorithmic optimizations to improve the convergence rate and speed profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
focus完成签到 ,获得积分10
1秒前
乐瑶完成签到 ,获得积分10
4秒前
LAN完成签到,获得积分10
8秒前
11秒前
Andrewlabeth完成签到,获得积分10
11秒前
哩哩完成签到,获得积分10
12秒前
Rina完成签到,获得积分10
12秒前
Rina发布了新的文献求助10
15秒前
夜晚不可以没有星星完成签到,获得积分10
17秒前
包容新蕾完成签到 ,获得积分10
18秒前
34秒前
取名真烦完成签到,获得积分10
35秒前
哩哩发布了新的文献求助10
40秒前
大模型应助取名真烦采纳,获得10
40秒前
刘伟完成签到,获得积分10
48秒前
希望天下0贩的0应助其言采纳,获得10
50秒前
烨枫晨曦完成签到,获得积分10
1分钟前
Rina发布了新的文献求助10
1分钟前
Lynny完成签到 ,获得积分0
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
机灵的小云酱完成签到,获得积分10
1分钟前
JamesPei应助Rina采纳,获得10
1分钟前
轻松元绿完成签到 ,获得积分10
1分钟前
1分钟前
彭于晏应助Mr采纳,获得10
1分钟前
Oay发布了新的文献求助10
1分钟前
1分钟前
Mr发布了新的文献求助10
1分钟前
1分钟前
雅典的宠儿完成签到 ,获得积分10
1分钟前
2分钟前
老实新筠发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助想逃离采纳,获得10
2分钟前
大模型应助老实新筠采纳,获得10
2分钟前
Orange应助一米九六大帅哥采纳,获得10
2分钟前
李爱国应助哩哩采纳,获得10
2分钟前
深情的楷瑞完成签到 ,获得积分10
2分钟前
想逃离完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4909785
求助须知:如何正确求助?哪些是违规求助? 4185980
关于积分的说明 12998857
捐赠科研通 3953101
什么是DOI,文献DOI怎么找? 2167775
邀请新用户注册赠送积分活动 1186260
关于科研通互助平台的介绍 1093086