重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine learning for automated and real-time two-dimensional to three-dimensional registration of the spine using a single radiograph

射线照相术 计算机科学 人工智能 计算机视觉 体素 计算 图像配准 体积热力学 算法 公制(单位) 相似性(几何) 图像(数学) 医学 放射科 物理 经济 量子力学 运营管理
作者
Andrew Abumoussa,Vivek Gopalakrishnan,Benjamin Succop,Michael Galgano,Sivakumar Jaikumar,Yueh Z. Lee,Deb A. Bhowmick
出处
期刊:Neurosurgical Focus [Journal of Neurosurgery Publishing Group]
卷期号:54 (6): E16-E16 被引量:2
标识
DOI:10.3171/2023.3.focus2345
摘要

The goal of this work was to methodically evaluate, optimize, and validate a self-supervised machine learning algorithm capable of real-time automatic registration and fluoroscopic localization of the spine using a single radiograph or fluoroscopic frame.The authors propose a two-dimensional to three-dimensional (2D-3D) registration algorithm that maximizes an image similarity metric between radiographic images to identify the position of a C-arm relative to a 3D volume. This work utilizes digitally reconstructed radiographs (DRRs), which are synthetic radiographic images generated by simulating the x-ray projections as they would pass through a CT volume. To evaluate the algorithm, the authors used cone-beam CT data for 127 patients obtained from an open-source de-identified registry of cervical, thoracic, and lumbar scans. They systematically evaluated and tuned the algorithm, then quantified the convergence rate of the model by simulating C-arm registrations with 80 randomly simulated DRRs for each CT volume. The endpoints of this study were time to convergence, accuracy of convergence for each of the C-arm's degrees of freedom, and overall registration accuracy based on a voxel-by-voxel measurement.A total of 10,160 unique radiographic images were simulated from 127 CT scans. The algorithm successfully converged to the correct solution 82% of the time with an average of 1.96 seconds of computation. The radiographic images for which the algorithm converged to the solution demonstrated 99.9% registration accuracy despite utilizing only single-precision computation for speed. The algorithm was found to be optimized for convergence when the search space was limited to a ± 45° offset in the right anterior oblique/left anterior oblique, cranial/caudal, and receiver rotation angles with the radiographic isocenter contained within 8000 cm3 of the volumetric center of the CT volume.The investigated machine learning algorithm has the potential to aid surgeons in level localization, surgical planning, and intraoperative navigation through a completely automated 2D-3D registration process. Future work will focus on algorithmic optimizations to improve the convergence rate and speed profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShuaiQiBB发布了新的文献求助10
刚刚
111发布了新的文献求助10
刚刚
刚刚
烂漫冰烟完成签到,获得积分10
刚刚
江浔卿完成签到 ,获得积分10
1秒前
难过的飞雪完成签到,获得积分10
1秒前
于金正给于金正的求助进行了留言
1秒前
Gru完成签到,获得积分10
2秒前
企鹅完成签到,获得积分10
2秒前
2秒前
大个应助哦哦哦采纳,获得10
2秒前
iris完成签到,获得积分10
2秒前
Zhaoyuemeng发布了新的文献求助10
2秒前
2秒前
MAVS完成签到,获得积分10
2秒前
3秒前
酷波zai发布了新的文献求助200
3秒前
英姑应助隐形太阳采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
打打应助hvgjgfjhgjh采纳,获得10
4秒前
阔达的凡发布了新的文献求助10
4秒前
Agnes完成签到,获得积分20
4秒前
4秒前
常大有完成签到,获得积分10
4秒前
满意火车发布了新的文献求助10
5秒前
5秒前
无花果应助不会取名字采纳,获得10
5秒前
冰雪完成签到,获得积分10
6秒前
党蕊芳发布了新的文献求助10
6秒前
7秒前
就这样吧发布了新的文献求助10
7秒前
肌肉猛男完成签到,获得积分10
7秒前
tty完成签到 ,获得积分10
8秒前
8秒前
whatislove完成签到,获得积分10
8秒前
9秒前
我我我发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673