Machine learning for automated and real-time two-dimensional to three-dimensional registration of the spine using a single radiograph

射线照相术 计算机科学 人工智能 计算机视觉 体素 计算 图像配准 体积热力学 算法 公制(单位) 相似性(几何) 图像(数学) 医学 放射科 物理 经济 量子力学 运营管理
作者
Andrew Abumoussa,Vivek Gopalakrishnan,Benjamin Succop,Michael Galgano,Sivakumar Jaikumar,Yueh Z. Lee,Deb A. Bhowmick
出处
期刊:Neurosurgical Focus [Journal of Neurosurgery Publishing Group]
卷期号:54 (6): E16-E16 被引量:2
标识
DOI:10.3171/2023.3.focus2345
摘要

The goal of this work was to methodically evaluate, optimize, and validate a self-supervised machine learning algorithm capable of real-time automatic registration and fluoroscopic localization of the spine using a single radiograph or fluoroscopic frame.The authors propose a two-dimensional to three-dimensional (2D-3D) registration algorithm that maximizes an image similarity metric between radiographic images to identify the position of a C-arm relative to a 3D volume. This work utilizes digitally reconstructed radiographs (DRRs), which are synthetic radiographic images generated by simulating the x-ray projections as they would pass through a CT volume. To evaluate the algorithm, the authors used cone-beam CT data for 127 patients obtained from an open-source de-identified registry of cervical, thoracic, and lumbar scans. They systematically evaluated and tuned the algorithm, then quantified the convergence rate of the model by simulating C-arm registrations with 80 randomly simulated DRRs for each CT volume. The endpoints of this study were time to convergence, accuracy of convergence for each of the C-arm's degrees of freedom, and overall registration accuracy based on a voxel-by-voxel measurement.A total of 10,160 unique radiographic images were simulated from 127 CT scans. The algorithm successfully converged to the correct solution 82% of the time with an average of 1.96 seconds of computation. The radiographic images for which the algorithm converged to the solution demonstrated 99.9% registration accuracy despite utilizing only single-precision computation for speed. The algorithm was found to be optimized for convergence when the search space was limited to a ± 45° offset in the right anterior oblique/left anterior oblique, cranial/caudal, and receiver rotation angles with the radiographic isocenter contained within 8000 cm3 of the volumetric center of the CT volume.The investigated machine learning algorithm has the potential to aid surgeons in level localization, surgical planning, and intraoperative navigation through a completely automated 2D-3D registration process. Future work will focus on algorithmic optimizations to improve the convergence rate and speed profile.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaotianshi完成签到,获得积分20
刚刚
1秒前
2秒前
3秒前
穆千发布了新的文献求助10
5秒前
嘉嘉sone完成签到,获得积分10
6秒前
嘿嘿发布了新的文献求助10
7秒前
Muller完成签到,获得积分10
7秒前
青火完成签到,获得积分10
7秒前
8秒前
Ava应助felix采纳,获得10
8秒前
不再方里发布了新的文献求助10
8秒前
瑞一杯小黄油拿铁完成签到,获得积分10
8秒前
喻紫寒完成签到 ,获得积分10
8秒前
9秒前
sage7发布了新的文献求助10
9秒前
斯文败类应助QTQ采纳,获得30
9秒前
王富贵完成签到,获得积分10
10秒前
10秒前
哭泣觅儿完成签到,获得积分10
10秒前
lukawa完成签到,获得积分10
11秒前
嘉嘉sone发布了新的文献求助30
12秒前
12秒前
文耳东完成签到,获得积分10
13秒前
领导范儿应助落后钢铁侠采纳,获得10
13秒前
Sayhai完成签到,获得积分10
13秒前
淡淡路灯完成签到 ,获得积分20
15秒前
杨涵发布了新的文献求助10
15秒前
Jiangtao应助weixi4457采纳,获得10
16秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
tanlaker完成签到,获得积分10
18秒前
18秒前
秋蚓发布了新的文献求助50
18秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511604
求助须知:如何正确求助?哪些是违规求助? 4606201
关于积分的说明 14498401
捐赠科研通 4541561
什么是DOI,文献DOI怎么找? 2488537
邀请新用户注册赠送积分活动 1470610
关于科研通互助平台的介绍 1442936