Machine learning for automated and real-time two-dimensional to three-dimensional registration of the spine using a single radiograph

射线照相术 计算机科学 人工智能 计算机视觉 体素 计算 图像配准 体积热力学 算法 公制(单位) 相似性(几何) 图像(数学) 医学 放射科 物理 经济 量子力学 运营管理
作者
Andrew Abumoussa,Vivek Gopalakrishnan,Benjamin Succop,Michael Galgano,Sivakumar Jaikumar,Yueh Z. Lee,Deb A. Bhowmick
出处
期刊:Neurosurgical Focus [American Association of Neurological Surgeons]
卷期号:54 (6): E16-E16 被引量:2
标识
DOI:10.3171/2023.3.focus2345
摘要

The goal of this work was to methodically evaluate, optimize, and validate a self-supervised machine learning algorithm capable of real-time automatic registration and fluoroscopic localization of the spine using a single radiograph or fluoroscopic frame.The authors propose a two-dimensional to three-dimensional (2D-3D) registration algorithm that maximizes an image similarity metric between radiographic images to identify the position of a C-arm relative to a 3D volume. This work utilizes digitally reconstructed radiographs (DRRs), which are synthetic radiographic images generated by simulating the x-ray projections as they would pass through a CT volume. To evaluate the algorithm, the authors used cone-beam CT data for 127 patients obtained from an open-source de-identified registry of cervical, thoracic, and lumbar scans. They systematically evaluated and tuned the algorithm, then quantified the convergence rate of the model by simulating C-arm registrations with 80 randomly simulated DRRs for each CT volume. The endpoints of this study were time to convergence, accuracy of convergence for each of the C-arm's degrees of freedom, and overall registration accuracy based on a voxel-by-voxel measurement.A total of 10,160 unique radiographic images were simulated from 127 CT scans. The algorithm successfully converged to the correct solution 82% of the time with an average of 1.96 seconds of computation. The radiographic images for which the algorithm converged to the solution demonstrated 99.9% registration accuracy despite utilizing only single-precision computation for speed. The algorithm was found to be optimized for convergence when the search space was limited to a ± 45° offset in the right anterior oblique/left anterior oblique, cranial/caudal, and receiver rotation angles with the radiographic isocenter contained within 8000 cm3 of the volumetric center of the CT volume.The investigated machine learning algorithm has the potential to aid surgeons in level localization, surgical planning, and intraoperative navigation through a completely automated 2D-3D registration process. Future work will focus on algorithmic optimizations to improve the convergence rate and speed profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张亚朋发布了新的文献求助30
1秒前
1秒前
汉堡包应助猫好好采纳,获得10
1秒前
充电宝应助无奈的灵松采纳,获得30
1秒前
芋圆完成签到,获得积分10
1秒前
漫天繁星发布了新的文献求助10
2秒前
2秒前
2秒前
情怀应助典雅的静采纳,获得10
3秒前
斯文静竹发布了新的文献求助10
3秒前
4444发布了新的文献求助10
3秒前
lisiying发布了新的文献求助10
3秒前
3秒前
顺利毕业应助优美的海秋采纳,获得10
3秒前
科研通AI2S应助陈阳采纳,获得10
3秒前
自然月亮完成签到 ,获得积分10
4秒前
galaxy008完成签到,获得积分10
4秒前
林大侠发布了新的文献求助10
4秒前
4秒前
5秒前
Orange应助elever11采纳,获得10
5秒前
Hou完成签到,获得积分10
6秒前
俗签发布了新的文献求助10
6秒前
王女士完成签到,获得积分20
6秒前
7秒前
周哥发布了新的文献求助10
7秒前
Hello应助哎嘿采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
yana发布了新的文献求助20
9秒前
辜越涛发布了新的文献求助10
9秒前
肥肥发布了新的文献求助10
10秒前
光电效应完成签到,获得积分10
10秒前
才下眉头发布了新的文献求助10
10秒前
天天快乐应助李卓航采纳,获得10
10秒前
斯文静竹完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059