Linear programming-based solution methods for constrained partially observable Markov decision processes

计算机科学 数学优化 马尔可夫决策过程 灵活性(工程) 时间范围 线性规划 部分可观测马尔可夫决策过程 可见的 动态规划 线性近似 马尔可夫链 马尔可夫过程 算法 马尔可夫模型 数学 非线性系统 统计 物理 量子力学 机器学习
作者
Robert K. Helmeczi,Can Kavaklioğlu,Mücahit Çevik
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (19): 21743-21769 被引量:2
标识
DOI:10.1007/s10489-023-04603-7
摘要

Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena. However, they are notoriously difficult to solve to optimality, and there exist only a few approximation methods for obtaining high-quality solutions. In this study, grid-based approximations are used in combination with linear programming (LP) models to generate approximate policies for CPOMDPs. A detailed numerical study is conducted with six CPOMDP problem instances considering both their finite and infinite horizon formulations. The quality of approximation algorithms for solving unconstrained POMDP problems is established through a comparative analysis with exact solution methods. Then, the performance of the LP-based CPOMDP solution approaches for varying budget levels is evaluated. Finally, the flexibility of LP-based approaches is demonstrated by applying deterministic policy constraints, and a detailed investigation into their impact on rewards and CPU run time is provided. For most of the finite horizon problems, deterministic policy constraints are found to have little impact on expected reward, but they introduce a significant increase to CPU run time. For infinite horizon problems, the reverse is observed: deterministic policies tend to yield lower expected total rewards than their stochastic counterparts, but the impact of deterministic constraints on CPU run time is negligible in this case. Overall, these results demonstrate that LP models can effectively generate approximate policies for both finite and infinite horizon problems while providing the flexibility to incorporate various additional constraints into the underlying model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉的薯片完成签到,获得积分10
刚刚
gmjinfeng完成签到,获得积分0
1秒前
1秒前
晨晨完成签到,获得积分10
1秒前
1秒前
木木发布了新的文献求助10
2秒前
abc完成签到,获得积分10
2秒前
大模型应助manjusaka采纳,获得10
2秒前
慕青应助manjusaka采纳,获得10
2秒前
FOX完成签到 ,获得积分10
2秒前
上官若男应助manjusaka采纳,获得10
2秒前
2秒前
hoijuon发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
achulw发布了新的文献求助10
5秒前
大个应助Lmey采纳,获得10
5秒前
6秒前
6秒前
Yinp完成签到,获得积分20
6秒前
wwwzzzccss完成签到,获得积分10
6秒前
SunXinwei发布了新的文献求助10
6秒前
天天快乐应助苗玉采纳,获得10
6秒前
原始人完成签到,获得积分10
7秒前
LPP完成签到 ,获得积分10
7秒前
7秒前
8秒前
龙泉完成签到 ,获得积分10
8秒前
bbd完成签到,获得积分20
8秒前
9秒前
李健的小迷弟应助安青兰采纳,获得10
9秒前
9秒前
9秒前
9秒前
zlw发布了新的文献求助10
10秒前
斯文败类应助Nov采纳,获得10
10秒前
YZ完成签到,获得积分10
10秒前
10秒前
10秒前
kuangweiming完成签到,获得积分10
11秒前
兵马俑发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148