亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Linear programming-based solution methods for constrained partially observable Markov decision processes

计算机科学 数学优化 马尔可夫决策过程 灵活性(工程) 时间范围 线性规划 部分可观测马尔可夫决策过程 可见的 动态规划 线性近似 马尔可夫链 马尔可夫过程 算法 马尔可夫模型 数学 非线性系统 统计 物理 量子力学 机器学习
作者
Robert K. Helmeczi,Can Kavaklioğlu,Mücahit Çevik
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (19): 21743-21769 被引量:2
标识
DOI:10.1007/s10489-023-04603-7
摘要

Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena. However, they are notoriously difficult to solve to optimality, and there exist only a few approximation methods for obtaining high-quality solutions. In this study, grid-based approximations are used in combination with linear programming (LP) models to generate approximate policies for CPOMDPs. A detailed numerical study is conducted with six CPOMDP problem instances considering both their finite and infinite horizon formulations. The quality of approximation algorithms for solving unconstrained POMDP problems is established through a comparative analysis with exact solution methods. Then, the performance of the LP-based CPOMDP solution approaches for varying budget levels is evaluated. Finally, the flexibility of LP-based approaches is demonstrated by applying deterministic policy constraints, and a detailed investigation into their impact on rewards and CPU run time is provided. For most of the finite horizon problems, deterministic policy constraints are found to have little impact on expected reward, but they introduce a significant increase to CPU run time. For infinite horizon problems, the reverse is observed: deterministic policies tend to yield lower expected total rewards than their stochastic counterparts, but the impact of deterministic constraints on CPU run time is negligible in this case. Overall, these results demonstrate that LP models can effectively generate approximate policies for both finite and infinite horizon problems while providing the flexibility to incorporate various additional constraints into the underlying model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助保持科研热情采纳,获得10
9秒前
舒服的觅夏完成签到,获得积分10
10秒前
13秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
25秒前
26秒前
彭于晏应助罗大壮采纳,获得10
35秒前
直率的笑翠完成签到 ,获得积分10
38秒前
bfs完成签到 ,获得积分10
44秒前
44秒前
罗大壮发布了新的文献求助10
47秒前
50秒前
量子星尘发布了新的文献求助10
50秒前
54秒前
mark163完成签到,获得积分10
54秒前
斯文败类应助科研通管家采纳,获得10
55秒前
55秒前
HANZHANG应助科研通管家采纳,获得10
55秒前
21完成签到 ,获得积分10
1分钟前
Jasper应助找不完采纳,获得10
1分钟前
1分钟前
1分钟前
Criminology34应助ling30采纳,获得10
1分钟前
1分钟前
Freeasy完成签到 ,获得积分10
2分钟前
SciGPT应助krajicek采纳,获得10
2分钟前
x夏天完成签到 ,获得积分10
2分钟前
zoey完成签到,获得积分10
2分钟前
2分钟前
sofardli完成签到,获得积分10
2分钟前
sofardli发布了新的文献求助20
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786