Linear programming-based solution methods for constrained partially observable Markov decision processes

计算机科学 数学优化 马尔可夫决策过程 灵活性(工程) 时间范围 线性规划 部分可观测马尔可夫决策过程 可见的 动态规划 线性近似 马尔可夫链 马尔可夫过程 算法 马尔可夫模型 数学 非线性系统 量子力学 统计 机器学习 物理
作者
Robert K. Helmeczi,Can Kavaklioğlu,Mücahit Çevik
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (19): 21743-21769 被引量:2
标识
DOI:10.1007/s10489-023-04603-7
摘要

Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena. However, they are notoriously difficult to solve to optimality, and there exist only a few approximation methods for obtaining high-quality solutions. In this study, grid-based approximations are used in combination with linear programming (LP) models to generate approximate policies for CPOMDPs. A detailed numerical study is conducted with six CPOMDP problem instances considering both their finite and infinite horizon formulations. The quality of approximation algorithms for solving unconstrained POMDP problems is established through a comparative analysis with exact solution methods. Then, the performance of the LP-based CPOMDP solution approaches for varying budget levels is evaluated. Finally, the flexibility of LP-based approaches is demonstrated by applying deterministic policy constraints, and a detailed investigation into their impact on rewards and CPU run time is provided. For most of the finite horizon problems, deterministic policy constraints are found to have little impact on expected reward, but they introduce a significant increase to CPU run time. For infinite horizon problems, the reverse is observed: deterministic policies tend to yield lower expected total rewards than their stochastic counterparts, but the impact of deterministic constraints on CPU run time is negligible in this case. Overall, these results demonstrate that LP models can effectively generate approximate policies for both finite and infinite horizon problems while providing the flexibility to incorporate various additional constraints into the underlying model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhaoyue完成签到,获得积分20
1秒前
科研通AI2S应助neil采纳,获得10
2秒前
宇宙无敌完成签到 ,获得积分10
3秒前
SY发布了新的文献求助10
3秒前
Lucas应助小田采纳,获得10
3秒前
叶飞荷发布了新的文献求助10
4秒前
4秒前
4秒前
无悔呀发布了新的文献求助10
4秒前
Ll发布了新的文献求助10
4秒前
纯真抽屉发布了新的文献求助10
4秒前
晖晖shining完成签到,获得积分10
5秒前
小钻风完成签到,获得积分20
5秒前
6秒前
明月照我程完成签到,获得积分10
6秒前
6秒前
小虎完成签到,获得积分10
6秒前
Wency完成签到,获得积分10
6秒前
缥缈的铅笔完成签到,获得积分10
6秒前
冰安完成签到 ,获得积分10
6秒前
小羊zhou完成签到,获得积分10
6秒前
自信鞯完成签到,获得积分10
7秒前
桑桑完成签到,获得积分10
7秒前
桐桐应助jucy采纳,获得50
7秒前
9秒前
AaronW发布了新的文献求助10
9秒前
qweerrtt完成签到,获得积分10
10秒前
hui发布了新的文献求助10
10秒前
小王发布了新的文献求助10
10秒前
bioinforiver发布了新的文献求助80
10秒前
11秒前
whale完成签到,获得积分10
11秒前
11秒前
hjj发布了新的文献求助10
12秒前
12秒前
双勾玉发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762