Linear programming-based solution methods for constrained partially observable Markov decision processes

计算机科学 数学优化 马尔可夫决策过程 灵活性(工程) 时间范围 线性规划 部分可观测马尔可夫决策过程 可见的 动态规划 线性近似 马尔可夫链 马尔可夫过程 算法 马尔可夫模型 数学 非线性系统 统计 物理 量子力学 机器学习
作者
Robert K. Helmeczi,Can Kavaklioğlu,Mücahit Çevik
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (19): 21743-21769 被引量:2
标识
DOI:10.1007/s10489-023-04603-7
摘要

Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena. However, they are notoriously difficult to solve to optimality, and there exist only a few approximation methods for obtaining high-quality solutions. In this study, grid-based approximations are used in combination with linear programming (LP) models to generate approximate policies for CPOMDPs. A detailed numerical study is conducted with six CPOMDP problem instances considering both their finite and infinite horizon formulations. The quality of approximation algorithms for solving unconstrained POMDP problems is established through a comparative analysis with exact solution methods. Then, the performance of the LP-based CPOMDP solution approaches for varying budget levels is evaluated. Finally, the flexibility of LP-based approaches is demonstrated by applying deterministic policy constraints, and a detailed investigation into their impact on rewards and CPU run time is provided. For most of the finite horizon problems, deterministic policy constraints are found to have little impact on expected reward, but they introduce a significant increase to CPU run time. For infinite horizon problems, the reverse is observed: deterministic policies tend to yield lower expected total rewards than their stochastic counterparts, but the impact of deterministic constraints on CPU run time is negligible in this case. Overall, these results demonstrate that LP models can effectively generate approximate policies for both finite and infinite horizon problems while providing the flexibility to incorporate various additional constraints into the underlying model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐cc完成签到 ,获得积分10
刚刚
firewood完成签到,获得积分10
1秒前
风趣的语蕊完成签到,获得积分10
1秒前
尤狸子发布了新的文献求助30
1秒前
思源应助澜冰采纳,获得10
1秒前
隐形曼青应助汤圆有奶瓶采纳,获得10
2秒前
明亮的青旋完成签到 ,获得积分10
2秒前
西海岸的风完成签到,获得积分10
2秒前
古丁完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
嗨害完成签到,获得积分10
5秒前
浮游应助能干的初瑶采纳,获得10
5秒前
崔懿龍完成签到,获得积分10
5秒前
孟一天完成签到,获得积分10
6秒前
善学以致用应助重要易槐采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
SciGPT应助得意黑采纳,获得10
7秒前
老实凝蕊完成签到,获得积分10
7秒前
7秒前
8秒前
巴旦木发布了新的文献求助10
8秒前
可爱的函函应助追寻音响采纳,获得10
8秒前
Wind应助ZRZR采纳,获得10
8秒前
8秒前
科研通AI2S应助空凌采纳,获得10
9秒前
情怀应助小鱼仔采纳,获得10
9秒前
kirazou完成签到,获得积分10
9秒前
杨旭发布了新的文献求助10
9秒前
10秒前
liu完成签到,获得积分10
11秒前
11秒前
困得晕乎乎完成签到,获得积分10
11秒前
小波完成签到,获得积分10
11秒前
11秒前
11秒前
jiajia完成签到,获得积分20
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444