Linear programming-based solution methods for constrained partially observable Markov decision processes

计算机科学 数学优化 马尔可夫决策过程 灵活性(工程) 时间范围 线性规划 部分可观测马尔可夫决策过程 可见的 动态规划 线性近似 马尔可夫链 马尔可夫过程 算法 马尔可夫模型 数学 非线性系统 统计 物理 量子力学 机器学习
作者
Robert K. Helmeczi,Can Kavaklioğlu,Mücahit Çevik
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (19): 21743-21769 被引量:2
标识
DOI:10.1007/s10489-023-04603-7
摘要

Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena. However, they are notoriously difficult to solve to optimality, and there exist only a few approximation methods for obtaining high-quality solutions. In this study, grid-based approximations are used in combination with linear programming (LP) models to generate approximate policies for CPOMDPs. A detailed numerical study is conducted with six CPOMDP problem instances considering both their finite and infinite horizon formulations. The quality of approximation algorithms for solving unconstrained POMDP problems is established through a comparative analysis with exact solution methods. Then, the performance of the LP-based CPOMDP solution approaches for varying budget levels is evaluated. Finally, the flexibility of LP-based approaches is demonstrated by applying deterministic policy constraints, and a detailed investigation into their impact on rewards and CPU run time is provided. For most of the finite horizon problems, deterministic policy constraints are found to have little impact on expected reward, but they introduce a significant increase to CPU run time. For infinite horizon problems, the reverse is observed: deterministic policies tend to yield lower expected total rewards than their stochastic counterparts, but the impact of deterministic constraints on CPU run time is negligible in this case. Overall, these results demonstrate that LP models can effectively generate approximate policies for both finite and infinite horizon problems while providing the flexibility to incorporate various additional constraints into the underlying model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐诗阅完成签到,获得积分10
1秒前
思源应助顺心的书包采纳,获得10
1秒前
倾诉给麻木的城市完成签到 ,获得积分10
1秒前
罗小罗发布了新的文献求助10
2秒前
CassieBotelho应助严yee采纳,获得10
4秒前
BowieHuang应助严yee采纳,获得10
4秒前
CassieBotelho应助严yee采纳,获得10
4秒前
4秒前
嗡嗡嗡发布了新的文献求助30
4秒前
科研通AI6.1应助kai采纳,获得10
4秒前
搜集达人应助April采纳,获得10
4秒前
李敏发布了新的文献求助10
5秒前
科研通AI6.1应助lJH采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
叶子完成签到,获得积分10
8秒前
8秒前
orixero应助zhaolin采纳,获得10
9秒前
10秒前
Auto发布了新的文献求助10
10秒前
10秒前
科研通AI6.1应助嗡嗡嗡采纳,获得10
10秒前
heihei嘿嘿发布了新的文献求助10
11秒前
shanshan发布了新的文献求助10
11秒前
顾矜应助直率三颜采纳,获得10
12秒前
william完成签到,获得积分10
12秒前
13秒前
嘉子完成签到,获得积分10
13秒前
嘻嘻哈哈完成签到 ,获得积分10
14秒前
14秒前
14秒前
Gg发布了新的文献求助10
16秒前
16秒前
呋喃完成签到,获得积分10
17秒前
zyyicu完成签到,获得积分10
19秒前
机灵柚子发布了新的文献求助10
19秒前
19秒前
爆米花应助shanshan采纳,获得10
20秒前
zhaolin发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766721
求助须知:如何正确求助?哪些是违规求助? 5566374
关于积分的说明 15413333
捐赠科研通 4900829
什么是DOI,文献DOI怎么找? 2636705
邀请新用户注册赠送积分活动 1584898
关于科研通互助平台的介绍 1540112