Linear programming-based solution methods for constrained partially observable Markov decision processes

计算机科学 数学优化 马尔可夫决策过程 灵活性(工程) 时间范围 线性规划 部分可观测马尔可夫决策过程 可见的 动态规划 线性近似 马尔可夫链 马尔可夫过程 算法 马尔可夫模型 数学 非线性系统 量子力学 统计 机器学习 物理
作者
Robert K. Helmeczi,Can Kavaklioğlu,Mücahit Çevik
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (19): 21743-21769 被引量:2
标识
DOI:10.1007/s10489-023-04603-7
摘要

Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena. However, they are notoriously difficult to solve to optimality, and there exist only a few approximation methods for obtaining high-quality solutions. In this study, grid-based approximations are used in combination with linear programming (LP) models to generate approximate policies for CPOMDPs. A detailed numerical study is conducted with six CPOMDP problem instances considering both their finite and infinite horizon formulations. The quality of approximation algorithms for solving unconstrained POMDP problems is established through a comparative analysis with exact solution methods. Then, the performance of the LP-based CPOMDP solution approaches for varying budget levels is evaluated. Finally, the flexibility of LP-based approaches is demonstrated by applying deterministic policy constraints, and a detailed investigation into their impact on rewards and CPU run time is provided. For most of the finite horizon problems, deterministic policy constraints are found to have little impact on expected reward, but they introduce a significant increase to CPU run time. For infinite horizon problems, the reverse is observed: deterministic policies tend to yield lower expected total rewards than their stochastic counterparts, but the impact of deterministic constraints on CPU run time is negligible in this case. Overall, these results demonstrate that LP models can effectively generate approximate policies for both finite and infinite horizon problems while providing the flexibility to incorporate various additional constraints into the underlying model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白瑾发布了新的文献求助10
1秒前
胡一把完成签到,获得积分10
2秒前
赘婿应助wang00wmd采纳,获得20
2秒前
5秒前
梓墨发布了新的文献求助10
7秒前
和谐项链发布了新的文献求助10
9秒前
xsy完成签到,获得积分10
9秒前
hping发布了新的文献求助10
9秒前
11秒前
鳗鱼文涛发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
科研通AI5应助dmj采纳,获得10
16秒前
积极香菜发布了新的文献求助10
18秒前
李浩发布了新的文献求助10
19秒前
胡一把发布了新的文献求助10
20秒前
Mercury应助wkz采纳,获得30
20秒前
杨南南完成签到,获得积分20
20秒前
22秒前
鳗鱼文涛发布了新的文献求助10
24秒前
李健应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
25秒前
water应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
大龄中二病完成签到,获得积分20
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
YamDaamCaa应助科研通管家采纳,获得30
25秒前
大模型应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
26秒前
李浩完成签到,获得积分10
27秒前
呀呀呀呀发布了新的文献求助10
29秒前
芓菡完成签到,获得积分10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167