材料科学
阴极
电化学
电解质
化学工程
阳极
纳米技术
电极
分析化学(期刊)
物理化学
色谱法
工程类
化学
作者
Zijing Song,Yuhang Liu,Zhaoxin Guo,Zhedong Liu,Zekun Li,Jieshu Zhou,Wei‐Di Liu,Rui Liu,Jingchao Zhang,Jiawei Luo,Haoran Jiang,Jia Ding,Wenbin Hu,Yanan Chen
标识
DOI:10.1002/adfm.202313998
摘要
Abstract The Na 3 V 2 (PO 4 ) 2 F 3 (NVPF) cathode material is usually nano‐sized particles exhibiting low tap density, high specific surface area, correspondingly low volume energy density, and cycle stability of the sodium‐ion batteries (SIBs). Herein, a high‐temperature shock (HTS) strategy is proposed to synthesize NVPF (HTS‐NVPF) with uniform conducting network and high tap density. During a typical HTS process (heating rate of 1100 °C s −1 for 10 s), the precursors rapidly crystallize and form large‐sized and dense particles. The tight connection between particles not only enhances their contact with carbon layers, but also reduces the specific surface area that inhibits side reactions between the interfaces and the electrolyte. Besides, ultrafast synthesis of NVPF reduces the F loss and amount of Na 3 V 2 (PO 4 ) 3 impurities, which improve cycling capability. The HTS‐NVPF demonstrates a high energy density of 413.4 Wh kg −1 and an ultra‐high specific capacity of 103.4 mAh g −1 at 10 C as well as 84.2% capacity retention after 1000 cycles. In addition, the excellent temperature adaptability of HTS‐NVPF (−45–55 °C) and remarkable electrochemical properties of NVPF||HC full cell demonstrate extreme competitiveness in commercial SIBs. Therefore, the HTS technique is considered to be a high‐efficiency strategy to synthetize NVPF and is expected to prepare other cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI