A corn canopy organs detection method based on improved DBi-YOLOv8 network

天蓬 农学 植物冠层 环境科学 生物 植物
作者
Haiou Guan,Haotian Deng,Xiaodan Ma,Tao Zhang,Yifei Zhang,Tianyu Zhu,Haichao Zhou,Zhicheng Gu,Yuxin Lu
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:154: 127076-127076 被引量:23
标识
DOI:10.1016/j.eja.2023.127076
摘要

Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R2 for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
忧郁子骞发布了新的文献求助10
2秒前
里德完成签到,获得积分10
2秒前
jingxuan发布了新的文献求助10
3秒前
跳跃碧灵完成签到,获得积分10
3秒前
4秒前
4秒前
所所应助光纤陀螺采纳,获得10
5秒前
Ling发布了新的文献求助10
5秒前
李英俊完成签到,获得积分10
5秒前
阔达的梦露完成签到,获得积分10
5秒前
vmformation发布了新的文献求助10
5秒前
5秒前
moyuqi发布了新的文献求助10
6秒前
星辰大海应助he采纳,获得10
6秒前
老迟到的土豆完成签到 ,获得积分10
6秒前
Dandelion完成签到,获得积分10
6秒前
FashionBoy应助西门追命采纳,获得10
8秒前
田...完成签到,获得积分10
8秒前
科研通AI6应助Panda_Zhou采纳,获得10
8秒前
8秒前
科研通AI5应助KyraC采纳,获得10
9秒前
10秒前
0529完成签到,获得积分20
10秒前
所所应助研友_alan采纳,获得10
10秒前
10秒前
公交卡完成签到,获得积分20
10秒前
烟花应助小张采纳,获得10
10秒前
翟永胜完成签到,获得积分10
10秒前
10秒前
Xiaosi完成签到,获得积分10
10秒前
完美的从波完成签到,获得积分10
10秒前
Meyako应助wlx采纳,获得20
11秒前
lll发布了新的文献求助10
12秒前
12秒前
12秒前
xiaominza发布了新的文献求助10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475