A corn canopy organs detection method based on improved DBi-YOLOv8 network

天蓬 农学 植物冠层 环境科学 生物 植物
作者
Haiou Guan,Haotian Deng,Xiaodan Ma,Tao Zhang,Yifei Zhang,Tianyu Zhu,Haichao Zhou,Zhicheng Gu,Yuxin Lu
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:154: 127076-127076 被引量:23
标识
DOI:10.1016/j.eja.2023.127076
摘要

Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R2 for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lisa发布了新的文献求助10
1秒前
qaz完成签到,获得积分10
1秒前
洁净醉柳发布了新的文献求助10
1秒前
不想搞事应助文静煜城采纳,获得10
2秒前
2秒前
研友_8KAOBn发布了新的文献求助10
2秒前
baobaonaixi完成签到,获得积分10
3秒前
打工不可能完成签到,获得积分10
3秒前
3秒前
科研发布了新的文献求助10
3秒前
啊南发布了新的文献求助10
4秒前
4秒前
4秒前
perfect完成签到 ,获得积分10
5秒前
5秒前
笨笨过客完成签到,获得积分10
5秒前
sqy77完成签到,获得积分10
6秒前
6秒前
6秒前
起司发布了新的文献求助30
7秒前
小滕完成签到 ,获得积分10
8秒前
8秒前
yu完成签到 ,获得积分10
8秒前
御坂妹110完成签到,获得积分10
8秒前
dtcao发布了新的文献求助10
9秒前
Mutsu完成签到,获得积分10
9秒前
李健应助啊南采纳,获得10
9秒前
CR7应助木瓜采纳,获得20
10秒前
鹿书雪发布了新的文献求助10
10秒前
aging00发布了新的文献求助10
10秒前
曾经盼易完成签到,获得积分10
10秒前
orixero应助zeannezg采纳,获得10
11秒前
冷酷严青发布了新的文献求助10
11秒前
失眠采白完成签到,获得积分10
12秒前
12秒前
乌波菲完成签到,获得积分10
12秒前
松山少林学武功完成签到 ,获得积分10
12秒前
缥缈的缘分完成签到,获得积分10
12秒前
乐乐应助hzhang0807采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412