已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A corn canopy organs detection method based on improved DBi-YOLOv8 network

天蓬 农学 植物冠层 环境科学 生物 植物
作者
Haiou Guan,Haotian Deng,Xiaodan Ma,Tao Zhang,Yifei Zhang,Tianyu Zhu,Haichao Zhou,Zhicheng Gu,Yuxin Lu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:154: 127076-127076 被引量:7
标识
DOI:10.1016/j.eja.2023.127076
摘要

Corn canopy organs detection is critical in obtaining high-throughput phenotypic data. Accurate identification of each organ can provide a reliable data source for canopy phenotype determination, which has significant theoretical and practical value for corn variety breeding, cultivation management, and high-quality and high-yielding production. Due to the difficulty in quickly identifying corn canopy organs in the natural environment of the field, it is challenging to obtain high-throughput phenotypic data. Therefore, this paper proposed a method for corn canopy organs detection based on an improved network model (DBi-YOLOv8). Firstly, the Raspberry Pi 4B was used as the sensor control center to construct an embedded system for corn canopy image acquisition and collected 987 images of corn plants. Secondly, the improved deformable convolution and Bi-level routing attention were embedded into the backbone and neck structures of the YOLOv8 network. With training the improved network, a corn canopy detection model was obtained, which enabled the rapid detection of corn canopy organs. Finally, the LTNS algorithm and TBC algorithm were proposed for counting of the number of leaves, ears, and tassels. On the testing set data, the detection performance of the model was analyzed through different evaluation metrics. The results showed that the mAP and FPS of the detection model were 89.4% and 65.3, which increased by 12% and 0.6 compared to the original model. In addition, both algorithms have high reliability, with the coefficient of determination R2 for counting crown leaves, ears, and tassel branches being 0.9336, 0.8149, and 0.917, respectively. This achievement proposed an accurate, non-destructive, and fast corn canopy organs detection model, providing reliable technical support for quantifying various traits of corn plants, field crop growth monitoring, and elite variety breeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
zzqx完成签到,获得积分10
8秒前
长欢发布了新的文献求助10
9秒前
郜雨寒发布了新的文献求助10
11秒前
14秒前
lucky完成签到 ,获得积分10
14秒前
汉堡包应助Melody采纳,获得10
16秒前
Fn完成签到 ,获得积分10
16秒前
活力芷烟完成签到 ,获得积分10
18秒前
毛毛完成签到 ,获得积分10
18秒前
19秒前
春山完成签到 ,获得积分10
19秒前
20秒前
20秒前
科研嘉完成签到,获得积分10
21秒前
研友_5Y9Z75完成签到 ,获得积分0
21秒前
天天快乐应助lchenbio采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
Leo963852完成签到 ,获得积分10
24秒前
lhz完成签到 ,获得积分10
24秒前
长欢发布了新的文献求助10
24秒前
Sheldon完成签到,获得积分10
27秒前
27秒前
巫马驳发布了新的文献求助10
27秒前
28秒前
长欢完成签到,获得积分10
29秒前
WangJL完成签到 ,获得积分10
30秒前
哈哈Hank发布了新的文献求助10
31秒前
zdy完成签到,获得积分10
31秒前
to完成签到 ,获得积分10
31秒前
hello2001完成签到 ,获得积分10
36秒前
WUHUIWEN完成签到,获得积分10
37秒前
38秒前
xiazq完成签到,获得积分20
39秒前
陶醉的钢笔完成签到 ,获得积分10
40秒前
小丸子完成签到 ,获得积分10
41秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139398
求助须知:如何正确求助?哪些是违规求助? 2790314
关于积分的说明 7794847
捐赠科研通 2446748
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141