Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children

逻辑回归 医学 接收机工作特性 超声波 无线电技术 支持向量机 队列 紫癜(腹足类) 放射科 人工智能 Lasso(编程语言) 肾炎 病理 内科学 计算机科学 生态学 生物 万维网
作者
Jie Chen,Zeying Wen,Xiaoqing Yang,Jie Jia,Xiaodong Zhang,Linping Pian,Ping Zhao
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:46 (2): 110-120 被引量:2
标识
DOI:10.1177/01617346231220000
摘要

Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort ( n = 308) or a validation cohort ( n = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795–0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助dssdadadds采纳,获得10
1秒前
昼夜本色完成签到 ,获得积分10
1秒前
ganchao1776发布了新的文献求助10
1秒前
科研通AI2S应助开心人达采纳,获得10
1秒前
Orange应助美好焦采纳,获得10
1秒前
vivianfou发布了新的文献求助30
2秒前
心杨发布了新的文献求助10
2秒前
王陈龙发布了新的文献求助10
2秒前
李欣华发布了新的文献求助10
2秒前
3秒前
bkagyin应助孤星泪采纳,获得10
3秒前
美味烧鸡完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
白衣完成签到,获得积分10
3秒前
xixi完成签到 ,获得积分10
4秒前
学术达人应助封迎松采纳,获得100
4秒前
huohuo完成签到,获得积分10
4秒前
CMUSK发布了新的文献求助10
4秒前
5秒前
net80yhm发布了新的文献求助10
5秒前
Johnspeed完成签到,获得积分10
5秒前
5秒前
faaami发布了新的文献求助10
6秒前
白衣发布了新的文献求助10
6秒前
qiudaoyu完成签到,获得积分10
7秒前
风伴水飞完成签到,获得积分10
7秒前
8秒前
8秒前
王kk发布了新的文献求助10
8秒前
为不争发布了新的文献求助10
8秒前
慕青应助LLX123采纳,获得10
9秒前
vivianfou完成签到,获得积分10
9秒前
小马甲应助准研究生采纳,获得10
9秒前
王小海111完成签到 ,获得积分10
9秒前
科研顺利1发布了新的文献求助10
9秒前
ED应助chensiyao采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110