Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children

逻辑回归 医学 接收机工作特性 超声波 无线电技术 支持向量机 队列 紫癜(腹足类) 放射科 人工智能 Lasso(编程语言) 肾炎 病理 内科学 计算机科学 万维网 生物 生态学
作者
Jie Chen,Zeying Wen,Xiaoqing Yang,Jie Jia,Xiaodong Zhang,Linping Pian,Peng Zhao
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:46 (2): 110-120
标识
DOI:10.1177/01617346231220000
摘要

Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort ( n = 308) or a validation cohort ( n = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795–0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mzrrong完成签到 ,获得积分10
1秒前
经纲完成签到 ,获得积分0
2秒前
梧桐完成签到 ,获得积分10
4秒前
鹏gg完成签到 ,获得积分10
6秒前
i2stay完成签到,获得积分10
7秒前
起风了完成签到 ,获得积分10
13秒前
Wang完成签到 ,获得积分20
14秒前
Cai完成签到,获得积分10
20秒前
神勇从波完成签到 ,获得积分10
25秒前
00完成签到 ,获得积分10
40秒前
研友_ZGAeoL完成签到,获得积分10
41秒前
wang完成签到 ,获得积分10
44秒前
spp完成签到 ,获得积分10
44秒前
小丸子完成签到 ,获得积分10
49秒前
韧迹完成签到 ,获得积分10
50秒前
提莫silence完成签到 ,获得积分10
53秒前
huangzsdy完成签到,获得积分10
54秒前
NeoWu完成签到,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
racill完成签到 ,获得积分10
1分钟前
大雄的梦想是什么完成签到 ,获得积分10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
小马甲应助zhang5657采纳,获得10
1分钟前
杰行天下完成签到,获得积分10
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
Ivan完成签到 ,获得积分10
1分钟前
可靠的初雪完成签到 ,获得积分10
1分钟前
fgh完成签到 ,获得积分10
1分钟前
bing完成签到 ,获得积分10
1分钟前
sheila完成签到 ,获得积分10
1分钟前
心灵美的修洁完成签到 ,获得积分10
1分钟前
kxdxng完成签到,获得积分10
1分钟前
1分钟前
zhang5657发布了新的文献求助10
1分钟前
完美世界应助Hardskills采纳,获得10
1分钟前
1分钟前
春天的粥完成签到 ,获得积分10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
lixinyue完成签到 ,获得积分10
1分钟前
武大帝77完成签到 ,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234716
求助须知:如何正确求助?哪些是违规求助? 2880931
关于积分的说明 8217448
捐赠科研通 2548601
什么是DOI,文献DOI怎么找? 1377870
科研通“疑难数据库(出版商)”最低求助积分说明 648067
邀请新用户注册赠送积分活动 623416