亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children

逻辑回归 医学 接收机工作特性 超声波 无线电技术 支持向量机 队列 紫癜(腹足类) 放射科 人工智能 Lasso(编程语言) 肾炎 病理 内科学 计算机科学 生态学 生物 万维网
作者
Jie Chen,Zeying Wen,Xiaoqing Yang,Jie Jia,Xiaodong Zhang,Linping Pian,Ping Zhao
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:46 (2): 110-120 被引量:3
标识
DOI:10.1177/01617346231220000
摘要

Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort ( n = 308) or a validation cohort ( n = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795–0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
17秒前
阿鑫发布了新的文献求助10
21秒前
43秒前
Fairy完成签到,获得积分10
45秒前
47秒前
56秒前
无尾熊完成签到 ,获得积分10
59秒前
yindi1991完成签到 ,获得积分10
2分钟前
2分钟前
木子完成签到 ,获得积分10
2分钟前
JasonQAQ发布了新的文献求助10
2分钟前
mmyhn发布了新的文献求助10
2分钟前
英俊的铭应助喜悦的毛衣采纳,获得10
2分钟前
充电宝应助清爽的喇叭花采纳,获得10
2分钟前
JasonQAQ完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Eileen完成签到 ,获得积分0
3分钟前
3分钟前
阿鑫发布了新的文献求助10
3分钟前
4分钟前
4分钟前
skdfz168完成签到 ,获得积分10
5分钟前
177完成签到,获得积分10
5分钟前
5分钟前
桐桐应助科研通管家采纳,获得10
5分钟前
5分钟前
小诸葛发布了新的文献求助10
5分钟前
5分钟前
小诸葛完成签到,获得积分20
5分钟前
小二郎应助若邻采纳,获得10
6分钟前
可爱的函函应助mosisa采纳,获得10
6分钟前
方法完成签到,获得积分10
7分钟前
8分钟前
若邻发布了新的文献求助10
8分钟前
8分钟前
8分钟前
8分钟前
mosisa发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5828993
求助须知:如何正确求助?哪些是违规求助? 6039693
关于积分的说明 15575990
捐赠科研通 4948605
什么是DOI,文献DOI怎么找? 2666364
邀请新用户注册赠送积分活动 1611975
关于科研通互助平台的介绍 1567013