Calendar life of lithium metal batteries: Accelerated aging and failure analysis

锂(药物) 金属锂 材料科学 钝化 加速老化 限制 电池(电) 电解质 法律工程学 电极 纳米技术 复合材料 机械工程 医学 热力学 化学 工程类 物理 功率(物理) 物理化学 内分泌学 图层(电子)
作者
Sangwook Kim,Pete Barnes,Hong‐Xing Zhang,Corey M. Efaw,Yulong Wang,Bumjun Park,Bin Li,Bor‐Rong Chen,M.C.W. Evans,Bor Yann Liaw,Daniel Olds,Peter G. Khalifah,Eric J. Dufek
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:65: 103147-103147 被引量:5
标识
DOI:10.1016/j.ensm.2023.103147
摘要

Lithium-metal batteries (LMBs) are prime candidates for next-generation energy storage devices. Despite the critical need to understand calendar aging in LMBs; cycle life and calendar life have received inconsistent attention. For acceptance into an application, especially electric vehicles, batteries are required to have sufficient calendar life which is defined as periods of low or intermittent use. In this study, an in-depth exploration into the calendar aging of LMB (Li||Li[Ni0.8Mn0.1Co0.1]O2 in pouch cell format) is conducted across multiple states-of-charge, temperatures, and pressures. The work identified the key limiting factors in calendar life as electrolyte depletion and increased cell impedance. Consumption of lithium did occur but due to cell design the losses were masked by the excess lithium in the cell design. Application of pressure extends calendar life. Moderate aging condition (i.e., OCV, 70 % SOC, 25 °C, and 10 psi) leads to <1 % reduction in capacity over 18 months. For this condition, the calendar life is conservatively projected at 31 months with an optimistic projection of 13.6 years. Additionally, this work contributes to the development of accelerated aging methods which can include elevated temperature (45 °C) and extended voltage holds which lead to intermittent impacts to cell passivation. The findings of this work strongly suggest that electrode mechanical aspects in addition to the chemical and electrochemical reactivities are important for long LMB calendar life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwa完成签到,获得积分10
刚刚
姜雨杭关注了科研通微信公众号
1秒前
木通发布了新的文献求助10
2秒前
渝州人完成签到,获得积分10
2秒前
Adian完成签到,获得积分10
3秒前
小马甲应助0384p采纳,获得10
3秒前
4秒前
klb13完成签到,获得积分0
4秒前
5秒前
5秒前
LeafJin完成签到 ,获得积分10
5秒前
TUTUKing完成签到,获得积分10
6秒前
6秒前
7秒前
充电宝应助博修采纳,获得10
7秒前
搜集达人应助徐杰采纳,获得10
7秒前
窦慕卉完成签到,获得积分10
7秒前
木言发布了新的文献求助10
7秒前
易哒哒完成签到,获得积分10
8秒前
学术小白发布了新的文献求助10
8秒前
8秒前
Zyou发布了新的文献求助10
8秒前
柔弱山芙完成签到,获得积分10
9秒前
完美世界应助清新的书雪采纳,获得10
9秒前
9秒前
9秒前
木通完成签到,获得积分10
9秒前
10秒前
10秒前
雷半双发布了新的文献求助10
10秒前
ElaRay完成签到,获得积分10
10秒前
科研通AI5应助灰灰采纳,获得10
10秒前
Wayi完成签到,获得积分10
11秒前
womodou完成签到,获得积分10
12秒前
zhang完成签到,获得积分10
12秒前
12秒前
甜甜牛青发布了新的文献求助10
13秒前
peach发布了新的文献求助10
13秒前
14秒前
小慧儿完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556269
求助须知:如何正确求助?哪些是违规求助? 3131813
关于积分的说明 9393417
捐赠科研通 2831860
什么是DOI,文献DOI怎么找? 1556519
邀请新用户注册赠送积分活动 726691
科研通“疑难数据库(出版商)”最低求助积分说明 716012