Rail surface defect detection using a transformer-based network

计算机科学 人工智能 可视化 稳健性(进化) 变压器 编码器 卷积神经网络 深度学习 特征提取 机器学习 模式识别(心理学) 工程类 电压 电气工程 生物化学 化学 基因 操作系统
作者
Feng Guo,Jian Liu,Yu Qian,Quanyi Xie
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:38: 100584-100584 被引量:6
标识
DOI:10.1016/j.jii.2024.100584
摘要

The detection of Rail Surface Defects (RSDs) plays a critical role in railway track maintenance. Traditional image processing methods exhibit limitations due to their intricate design and insufficient robustness, thereby restricting their broader applications. Recently, deep learning-based RSD detection methods have drawn great attention. However, these methods predominantly rely on Convolutional Neural Networks (CNN), neglecting the hierarchical linkages amongst disparate features, which impedes the refined portrayal of RSDs. To address these issues, we propose RailFormer, a novel system leveraging the capabilities of Transformer-based networks for the precise and efficient detection of RSDs. The encoder in RailFormer incorporates overlapped patch merging, efficient self-attention, and a Mix-feed Forward Network (FFN), all meticulously designed to bolster feature fusion from both global and local perspectives. Additionally, we have implemented a Criss-Cross attention module within the decoder to facilitate RSD detection and manage computational complexity. In this study, the proposed RailFormer and four other models including SegFormer, Swin Transformer, ViT, and UNet are trained and compared. We employ the widely used public RSD datasets RSDD, encompassing both Type-I and Type-II RSDD images and a customized RSD dataset, as a basis for performance comparison. The training outcomes and visualization results show that RailFormer achieves the highest mean Intersection over Union (mIoU) and superior visualization performance on the RSDD and the customized RSD datasets. These results demonstrate the superiority of RailFormer and underline its potential for future deployment in railway track inspection applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄周发布了新的文献求助10
刚刚
学习使勇哥进步完成签到 ,获得积分10
1秒前
1秒前
等待葵阴完成签到,获得积分10
3秒前
QWDSA完成签到,获得积分10
3秒前
墩子发布了新的文献求助40
4秒前
研友_VZG7GZ应助阿a采纳,获得10
4秒前
青藤之凉发布了新的文献求助10
5秒前
ew发布了新的文献求助100
5秒前
iNk应助lsn采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
PC完成签到,获得积分20
6秒前
6秒前
NL14D发布了新的文献求助10
6秒前
yutonghuan发布了新的文献求助10
6秒前
wu8577应助shiki采纳,获得10
6秒前
等待葵阴发布了新的文献求助10
6秒前
青藤之凉完成签到,获得积分10
9秒前
糟糕的鹏飞完成签到 ,获得积分10
10秒前
风清扬应助Chara_kara采纳,获得10
10秒前
小小柳叶刀完成签到,获得积分10
10秒前
哟哟发布了新的文献求助10
11秒前
14秒前
14秒前
14秒前
酷炫青烟完成签到 ,获得积分10
14秒前
15秒前
Chara_kara完成签到,获得积分10
17秒前
危机的如容完成签到,获得积分10
18秒前
归尘发布了新的文献求助10
19秒前
xbronx发布了新的文献求助10
20秒前
香蕉招牌发布了新的文献求助10
21秒前
Bruce Lin完成签到,获得积分10
23秒前
sun发布了新的文献求助20
24秒前
26秒前
27秒前
28秒前
泰勒完成签到,获得积分10
28秒前
sophiemore发布了新的文献求助30
31秒前
泰勒发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821