亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
35秒前
55秒前
阿俊完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
1分钟前
uss完成签到,获得积分10
1分钟前
sage_kakarotto完成签到 ,获得积分10
1分钟前
Akim应助王一博采纳,获得10
1分钟前
Sea_moon完成签到,获得积分10
1分钟前
TonyLee完成签到,获得积分10
2分钟前
2分钟前
王一博完成签到,获得积分10
2分钟前
王一博发布了新的文献求助10
3分钟前
3分钟前
petrichor发布了新的文献求助10
3分钟前
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
小丸子发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Lucas应助小丸子采纳,获得30
4分钟前
4分钟前
大个应助兴奋稚晴采纳,获得10
4分钟前
荒天帝石昊完成签到,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
隐形曼青应助科研通管家采纳,获得50
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
lalala完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538716
求助须知:如何正确求助?哪些是违规求助? 4625787
关于积分的说明 14596894
捐赠科研通 4566449
什么是DOI,文献DOI怎么找? 2503314
邀请新用户注册赠送积分活动 1481402
关于科研通互助平台的介绍 1452780