FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小樱颖子完成签到 ,获得积分10
2秒前
小二郎应助苗条傲蕾采纳,获得10
2秒前
2秒前
英姑应助班里采纳,获得10
2秒前
我下载不了论文啊完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
陈雨发布了新的文献求助10
9秒前
qiuli完成签到,获得积分10
9秒前
酷波er应助Kilig采纳,获得30
9秒前
无极微光应助废寝忘食采纳,获得40
10秒前
13秒前
13秒前
诗亭完成签到,获得积分10
13秒前
刘英岑完成签到,获得积分10
16秒前
王誉霖完成签到,获得积分10
16秒前
16秒前
阳光he完成签到,获得积分10
17秒前
班里发布了新的文献求助10
17秒前
啦啦啦123发布了新的文献求助10
18秒前
废寝忘食完成签到,获得积分10
18秒前
dandan完成签到,获得积分10
19秒前
21秒前
23秒前
啦啦啦123完成签到,获得积分10
23秒前
冷傲迎梦完成签到,获得积分20
26秒前
26秒前
ysk完成签到,获得积分10
27秒前
王辰宁完成签到,获得积分10
28秒前
小树完成签到 ,获得积分10
28秒前
gomm完成签到,获得积分10
28秒前
哈哈哈完成签到,获得积分10
29秒前
Rae完成签到,获得积分10
30秒前
冷傲迎梦发布了新的文献求助10
30秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
33秒前
迷路的糜完成签到,获得积分10
34秒前
Owen应助米热采纳,获得10
35秒前
36秒前
隐形曼青应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415118
求助须知:如何正确求助?哪些是违规求助? 4531802
关于积分的说明 14130408
捐赠科研通 4447300
什么是DOI,文献DOI怎么找? 2439655
邀请新用户注册赠送积分活动 1431765
关于科研通互助平台的介绍 1409365