FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YangSY发布了新的文献求助10
刚刚
莲莲发布了新的文献求助10
1秒前
CodeCraft应助搞怪的元槐采纳,获得30
2秒前
背后中心发布了新的文献求助10
2秒前
2秒前
asri1234发布了新的文献求助30
3秒前
清水胖子发布了新的文献求助30
3秒前
Lucas应助clueless采纳,获得10
4秒前
香菜发布了新的文献求助10
4秒前
6秒前
然大宝完成签到,获得积分10
6秒前
sdsa完成签到,获得积分10
6秒前
drift完成签到,获得积分10
7秒前
所所应助正直从阳采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
清水胖子完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
脑洞疼应助Robin采纳,获得10
14秒前
14秒前
研友_VZG7GZ应助乐观的眼睛采纳,获得10
17秒前
czy发布了新的文献求助10
17秒前
18秒前
湖蓝色发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
科研通AI6.1应助yanghuiying采纳,获得10
21秒前
orixero应助叶成会采纳,获得10
21秒前
22秒前
XYZ发布了新的文献求助10
22秒前
张啦啦发布了新的文献求助20
22秒前
Wu发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488