FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发发发完成签到,获得积分10
刚刚
orixero应助关耳采纳,获得10
刚刚
共享精神应助武小伟采纳,获得10
刚刚
刚刚
阿波罗发布了新的文献求助10
刚刚
深情安青应助璐璐核桃露采纳,获得10
刚刚
姿姿发布了新的文献求助10
刚刚
年轻绮南发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
aze发布了新的文献求助30
2秒前
缓慢思枫完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
麦麦关注了科研通微信公众号
3秒前
上官若男应助ABLAT采纳,获得10
3秒前
4秒前
4秒前
Orange应助罗兴鲜采纳,获得10
4秒前
小脚丫完成签到,获得积分10
4秒前
怕黑海冬完成签到,获得积分10
4秒前
Wyan发布了新的文献求助100
4秒前
大个应助shirleeyeahe采纳,获得10
5秒前
yhz123完成签到 ,获得积分10
5秒前
踏雪完成签到 ,获得积分10
5秒前
kolico发布了新的文献求助10
6秒前
小猴子应助王辰北采纳,获得10
6秒前
希望天下0贩的0应助AAA采纳,获得10
6秒前
7秒前
彭于晏应助dh采纳,获得10
7秒前
23发布了新的文献求助20
7秒前
应飞飞完成签到,获得积分10
8秒前
8秒前
科目三应助dong采纳,获得10
8秒前
8秒前
攀登完成签到,获得积分10
9秒前
彼岸发布了新的文献求助10
9秒前
9秒前
9秒前
Hello应助科研通管家采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853