FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyauthor完成签到,获得积分10
1秒前
2秒前
xuzekun完成签到,获得积分10
2秒前
2秒前
鱼鱼片片发布了新的文献求助10
2秒前
2秒前
ding应助雨碎寒江采纳,获得10
3秒前
sasa发布了新的文献求助10
3秒前
許1111发布了新的文献求助10
4秒前
Alex发布了新的文献求助10
4秒前
harriet chen发布了新的文献求助10
4秒前
阿萨十大发布了新的文献求助10
4秒前
5秒前
华仔应助研友_8QxayZ采纳,获得10
5秒前
6秒前
help3q完成签到,获得积分10
7秒前
llh发布了新的文献求助10
7秒前
赘婿应助暮商零七采纳,获得10
7秒前
8秒前
怡然冷安完成签到,获得积分10
8秒前
8秒前
哈哈哈完成签到,获得积分10
8秒前
秋去去完成签到,获得积分10
9秒前
希望天下0贩的0应助Towne采纳,获得10
9秒前
10秒前
10秒前
李健应助CJN采纳,获得10
10秒前
lily完成签到,获得积分20
11秒前
流云发布了新的文献求助10
11秒前
April完成签到 ,获得积分10
11秒前
清秀橘子完成签到,获得积分10
11秒前
mika完成签到,获得积分10
11秒前
wuliumu完成签到,获得积分10
11秒前
12秒前
12秒前
lizhoukan1完成签到,获得积分10
12秒前
李爱国应助whisper采纳,获得10
12秒前
13秒前
李爱国应助Rgly采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386