FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夏发布了新的文献求助10
1秒前
科目三应助豆西豆采纳,获得10
2秒前
2秒前
lmh完成签到,获得积分10
2秒前
乐乐应助极速小鱼采纳,获得10
3秒前
4秒前
默默的问玉完成签到,获得积分10
5秒前
wanci应助happiness采纳,获得10
5秒前
小马嘻嘻发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
int0030应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
隐形曼青应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得20
7秒前
buno应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
buno应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
小糖完成签到,获得积分10
9秒前
科研通AI6应助分隔符采纳,获得10
9秒前
9秒前
李卓霖发布了新的文献求助10
10秒前
贾方硕发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299