FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yebao给yebao的求助进行了留言
刚刚
一品红完成签到,获得积分20
1秒前
biye6发布了新的文献求助10
1秒前
1秒前
深情安青应助玖伍采纳,获得10
1秒前
激动的小笼包完成签到,获得积分10
1秒前
奋斗映寒发布了新的文献求助10
2秒前
2秒前
Loong完成签到,获得积分10
2秒前
小二郎应助白潇潇采纳,获得10
2秒前
端庄煎饼完成签到,获得积分10
2秒前
2秒前
哔哔发布了新的文献求助10
2秒前
momo完成签到,获得积分10
3秒前
章慕思发布了新的文献求助30
3秒前
PO完成签到,获得积分10
4秒前
Fuao完成签到,获得积分10
4秒前
Matberry完成签到 ,获得积分10
4秒前
NexusExplorer应助Aeon采纳,获得10
4秒前
宋宋发布了新的文献求助10
4秒前
科目三应助H28G采纳,获得10
4秒前
无敌小奶龙完成签到 ,获得积分10
4秒前
知了完成签到,获得积分10
5秒前
敏er好学发布了新的文献求助10
5秒前
竹本完成签到 ,获得积分10
6秒前
爱听歌的妖丽完成签到,获得积分10
7秒前
7秒前
7秒前
科研底层韭菜完成签到 ,获得积分10
7秒前
Lisa完成签到,获得积分10
8秒前
8秒前
小欣穗穗发布了新的文献求助10
8秒前
luo发布了新的文献求助10
8秒前
jenny完成签到,获得积分10
8秒前
zakary完成签到,获得积分10
9秒前
追光者完成签到,获得积分10
9秒前
Akim应助既望采纳,获得10
9秒前
wp完成签到,获得积分10
9秒前
车厘子完成签到 ,获得积分10
10秒前
kevinarnett完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946912
求助须知:如何正确求助?哪些是违规求助? 4210925
关于积分的说明 13091694
捐赠科研通 3991925
什么是DOI,文献DOI怎么找? 2185283
邀请新用户注册赠送积分活动 1200695
关于科研通互助平台的介绍 1114249