亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
dawn完成签到,获得积分20
11秒前
dawn发布了新的文献求助10
14秒前
36秒前
汉堡包应助Fluoxtine采纳,获得10
43秒前
xixi发布了新的文献求助10
43秒前
丘比特应助科研通管家采纳,获得10
44秒前
FashionBoy应助科研通管家采纳,获得10
44秒前
汉堡包应助科研通管家采纳,获得10
44秒前
慕青应助科研通管家采纳,获得10
44秒前
kuoping完成签到,获得积分0
47秒前
52秒前
机灵自中完成签到,获得积分10
58秒前
Stellarshi517发布了新的文献求助20
58秒前
1分钟前
科研通AI6.1应助xixi采纳,获得10
1分钟前
lyw发布了新的文献求助10
1分钟前
田様应助Stellarshi517采纳,获得20
1分钟前
1分钟前
kuiuLinvk发布了新的文献求助10
1分钟前
1分钟前
kuiuLinvk完成签到,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
采薇发布了新的文献求助10
2分钟前
2分钟前
科研通AI6.1应助小博采纳,获得10
2分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
彭于晏应助凛玖niro采纳,获得10
2分钟前
Stellarshi517发布了新的文献求助20
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lzmcsp发布了新的文献求助10
2分钟前
2分钟前
斯文败类应助Marshall采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577