Online defect detection on metallic plates using electromagnetic tomography

断层摄影术 材料科学 光学 物理
作者
Pu Huang,Xiaofei Huang,Gao Peng,Shuliang Wang,Yuedong Xie
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:66 (2): 109-117
标识
DOI:10.1784/insi.2024.66.2.109
摘要

Metallic samples are widely applied in modern industrial production. Due to non-uniformities in the stress load, such samples may become damaged and produce defects, which can cause unnecessary economic losses. In this paper, an online defect detection method is proposed for the quality monitoring of metallic plates. The research involves the design and optimisation of an electromagnetic tomography (EMT) sensor and the development of a fast tomography algorithm. Specifically, a planar array eddy current sensor is designed for in-situ structural health monitoring of metallic specimens. The parameters of the sensor are optimised using an orthogonal methodology and a response surface methodology to improve the uniformity of the sensitivity field. In addition, a second-order iterative Bregman reconstruction algorithm is investigated to reconstruct the defect image, which can improve the reconstruction speed for this ill-posed problem. Simulation and experimental results indicate that the proposed method can be applied to effectively evaluate the locations and sizes of defects in metallic specimens. The correlation coefficients of the reconstructed images using the proposed method are larger than 0.8. Compared with traditional reconstruction algorithms, the method proposed in this paper shows fast convergence speed and smaller estimation errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
run完成签到 ,获得积分10
刚刚
1秒前
闪光灯完成签到,获得积分10
3秒前
搜集达人应助kai采纳,获得10
4秒前
SciGPT应助秋夏采纳,获得10
4秒前
run关注了科研通微信公众号
4秒前
顾矜应助张雅雅采纳,获得10
4秒前
诚心映菱发布了新的文献求助10
5秒前
6秒前
7秒前
cigar发布了新的文献求助10
8秒前
9秒前
11秒前
顾矜应助Zjx采纳,获得30
11秒前
easton发布了新的文献求助10
11秒前
Jasper应助ZhangHongyu采纳,获得10
11秒前
祝我好运完成签到 ,获得积分10
12秒前
甜美早晨完成签到 ,获得积分10
13秒前
LIUYC发布了新的文献求助10
14秒前
SSQY发布了新的文献求助10
14秒前
糟糕的雁菱完成签到 ,获得积分10
14秒前
Lucas应助仇晓采纳,获得10
16秒前
duncan发布了新的文献求助10
16秒前
酷波er应助小黄鸭采纳,获得10
16秒前
wang关注了科研通微信公众号
17秒前
18秒前
19秒前
19秒前
权志龙发布了新的文献求助20
19秒前
20秒前
Archy发布了新的文献求助10
20秒前
20秒前
思源应助张铎采纳,获得10
21秒前
祎橘完成签到 ,获得积分10
22秒前
22秒前
酷波er应助Hellowa采纳,获得10
22秒前
木夕发布了新的文献求助10
22秒前
传奇3应助ANXU采纳,获得10
22秒前
852应助秋夏采纳,获得10
23秒前
丢手绢发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513